MATH2068 MATHEMATICAL ANALYSIS II (2023-24)

CHI-WAI LEUNG

1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a realvalued function defined on I.

Definition 1.1. Let $c \in I$. We say that f is differentiable at c if the following limit exists:

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

In this case, we write $f^{\prime}(c)$ for the above limit and we call it the derivative of f at c. We say that if f is differentiable on I if $f^{\prime}(x)$ exists for every point x in I.

Proposition 1.2. Let $c \in I$. Then $f^{\prime}(c)$ exists if and only if there is a function φ defined on I such that the function φ is continuous at c and

$$
f(x)-f(c)=\varphi(x)(x-c)
$$

for all $x \in I$.
In this case, $\varphi(c)=f^{\prime}(c)$.
Proof. Assume that $f^{\prime}(c)$ exists. Define a function $\varphi: I \rightarrow \mathbb{R}$ by

$$
\varphi(x)= \begin{cases}\frac{f(x)-f(c)}{x-c} & \text { if } x \neq c \\ f^{\prime}(c) & \text { if } x=c\end{cases}
$$

Clearly, we have $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$. We want to show that the function φ is continuous at c. In fact, let $\varepsilon>0$, by the definition of the limit of a function, there is $\delta>0$ such that

$$
\left|f^{\prime}(c)-\frac{f(x)-f(c)}{x-c}\right|<\varepsilon
$$

whenever $x \in I$ with $0<|x-c|<\delta$. Therefore, we have $\left|f^{\prime}(c)-\varphi(x)\right|<\varepsilon$ as $x \in I$ with $0<|x-c|<\delta$. Since $\varphi(c)=f^{\prime}(c)$, we have $\left|f^{\prime}(c)-\varphi(x)\right|<\varepsilon$ as $x \in I$ with $|x-c|<\delta$, hence the function φ is continuous at c as desired.
The converse is clear since $\varphi(x)=\frac{f(x)-f(c)}{x-c}$ if $x \neq c$. The proof is complete.

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.
Proof. By using Proposition 1.2, if $f^{\prime}(c)$ exists, then there is a function φ defined on I such that the function φ is continuous at c and we have $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$. This implies that $\lim _{x \rightarrow c} f(x)=f(c)$, so f is continuous at c as desired.

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function $f(x):=|x|$ is a continuous function on \mathbb{R} but $f^{\prime}(0)$ does not exist.

Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differentiable at $c \in I$. We have the following assertions.
(i) $(f+g)^{\prime}(c)$ exists and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
(ii) The product $(f \cdot g)^{\prime}(c)$ exists and $(f \cdot g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
(iii) If $g(c) \neq 0$, then we have $\left(\frac{f}{g}\right)^{\prime}(c)$ exists and $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g(c)^{2}}$.

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (ii), note that we have

$$
\frac{f(x) g(x)-f(c) g(c)}{x-c}=\frac{f(x)-f(c)}{x-c} g(x)+f(c) \frac{g(x)-g(c)}{x-c}
$$

for all $x \in I$ with $x \neq c$. From this, together with Proposition 1.3, Part (ii) follows.
For Part (iii), by using Part (ii), it suffices to show that $\left(\frac{1}{g}\right)^{\prime}(c)=-\frac{g^{\prime}(c)}{g(c)^{2}}$. In fact, $g^{\prime}(c)$ exists, so g is continuous at c. Since $g(c) \neq 0$, there is $\delta_{1}>0$ so that $g(x) \neq 0$ for all $x \in I$ with $|x-c|<\delta_{1}$. Then we have

$$
\frac{1}{x-c}\left(\frac{1}{g(x)}-\frac{1}{g(c)}\right)=\frac{1}{x-c}\left(\frac{g(c)-g(x)}{g(x) g(c)}\right)
$$

for all $x \in I$ with $0<|x-c|<\delta_{1}$. By taking $x \rightarrow c$, we see that $\left(\frac{1}{g}\right)^{\prime}(c)$ exists and $\left(\frac{1}{g}\right)^{\prime}(c)=\frac{-g^{\prime}(c)}{g(c)^{2}}$. The proof is complete.

Proposition 1.6. (Chain Rule): Let f, g be functions defined on \mathbb{R}. Let $d=f(c)$ for some $c \in \mathbb{R}$. Suppose that $f^{\prime}(c)$ and $g^{\prime}(d)$ exist. Then the derivative of composition $(g \circ f)^{\prime}(c)$ exists and $(g \circ f)^{\prime}(c)=$ $g^{\prime}(d) f^{\prime}(c)$.
Proof. By using Proposition 1.2, we want to find a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g \circ f(x)-g \circ f(c)=\varphi(x)(x-c)
$$

for all $x \in \mathbb{R}$ and the function $\varphi(x)$ is continuous at c, and so $(g \circ f)^{\prime}(c)=\varphi(c)$.
Let $y=f(x)$. By using Proposition 1.2 again, there is a function and $\beta(y)$ so that $g(y)-g(d)=$ $\beta(y)(y-d)$ for all $y \in \mathbb{R}$ and $\beta(y)$ is continuous at d. Similarly, there is a function $\alpha(x)$ we have $f(x)-f(c)=\alpha(x)(x-c)$ for all $x \in \mathbb{R}$ and $\alpha(x)$ is continuous at c. These two equations imply that

$$
g \circ f(x)-g \circ f(c)=\beta(f(x))(f(x)-f(c))=\beta(f(x)) \alpha(x)(x-c)
$$

for all $x \in \mathbb{R}$. Let $\varphi(x):=\beta(f(x)) \cdot \alpha(x)$ for $x \in \mathbb{R}$. Since $\beta(d)=g^{\prime}(d)$ and $\alpha(c)=f^{\prime}(c)$, we see that $\varphi(c)=\beta(f(c)) \alpha(c)=g^{\prime}(d) f^{\prime}(c)$. It remains to show that the function φ is continuous at c. In fact, $f^{\prime}(c)$ exists, so f is continuous at c, and hence the composition $\beta \circ f(x)$ is continuous at c. In addition, the function α is continuous at c. Therefore, the function $\varphi:=(\beta \circ f) \cdot \alpha$ is continuous at c, and so $(g \circ f)^{\prime}(c)$ exists with $(g \circ f)^{\prime}(c)=\varphi(c)=g^{\prime}(d) f^{\prime}(c)$. The proof is complete.

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto J. Let $d=f(c)$ for $c \in I$. Assume that $f^{\prime}(c)$ exists and the inverse of f, write $g:=f^{-1}$, is continuous at d. If $f^{\prime}(c) \neq 0$, then $g^{\prime}(d)$ exists and $g^{\prime}(d)=\frac{1}{f^{\prime}(c)}$.

Proof. Let $y=f(x)$. Note that by using Proposition 1.2, there is a function F on I such that $f(x)-f(c)=F(x)(x-c)$ for all $x \in I$ and F is continuous at c with $F(c)=f^{\prime}(c) \neq 0 . \quad F$ is continuous at c, so there are open intervals I_{1} and J_{1} such that $c \in I_{1} \subseteq I$ and $d \in f\left(I_{1}\right)=J_{1}$, moreover, $F(x) \neq 0$ for all $x \in I_{1}$. Note that since $f(x)-f(c)=F(x)(x-c)$, we have $y-d=$ $f(g(y))-f(g(c))=F(g(y))(g(y)-g(d))$ for all $y \in J_{1}$. Since $F(x) \neq 0$ for all $x \in I_{1}$, we have $g(y)-g(d)=F(g(y))^{-1}(y-d)$ for all $y \in J_{1}$. Note that the function $F(g(y))^{-1}$ is continuous at d. Thus, $g^{\prime}(d)$ exists and $g^{\prime}(d)=F(g(d))^{-1}=\frac{1}{f^{\prime}(c)}$ as desired.

Definition 1.8. Let D be a non-empty subset of \mathbb{R} and let g be a real-valued function defined on D.
(i) We say that g has an absolute maximum (resp. absolute minimum) at a point $c \in D$ if $g(c) \geq g(x)$ (resp. $g(c) \leq g(x))$ for all $x \in D$.
In this case, c is called an absolute extreme point of g.
(ii) We say that g has a local maximum (resp. local minimum) at a point $c \in D$ if there is $r>0$ such that $(c-r, c+r) \subseteq D$ and $g(c) \geq g(x)$ (resp. $g(c) \leq g(x))$ for all $x \in(c-r, c+r)$. In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point, for example if $g(x):=x$ for $x \in[0,1]$, then g has an absolute maximum point at $x=1$ of g but 1 is not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local extreme point at $c \in I$ and $f^{\prime}(c)$ exists. Then $f^{\prime}(c)=0$.
Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is $r>0$ such that $f(x) \geq f(c)$ for $x \in(c-r, c+r) \subseteq I$. Since $f^{\prime}(c)$ exists, by using Proposition 1.2 , there is a function φ defined on I such that $f(x)-f(c)=\varphi(x)(x-c)$ for all $x \in I$ and φ is continuous at c with $\varphi(c)=f^{\prime}(c)$. Thus, we have $\varphi(x)(x-c) \geq 0$ for all $x \in(c-r, c+r)$. From this we see that $\varphi(x) \geq 0$ as $x \in(c, c+r)$, similarly, $\varphi(x) \leq 0$ as $x \in(c-r, c)$. The function φ is continuous at c, so $\varphi(c)=0$ and hence $f^{\prime}(c)=\varphi(c)=0$ as desired.

Proposition 1.11. Rolle's Theorem: Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Assume that $f^{\prime}(x)$ exists for all $x \in(a, b)$ and $f(a)=f(b)$. Then there is a point $c \in(a, b)$ such that $f^{\prime}(c)=0$.
Proof. Recall a fact that every continuous function defined a compact attains absolute points, that is, there are c_{1} and c_{2} such that $f\left(c_{1}\right)=\min _{x \in[a, b]} f(x)$ and $f\left(c_{2}\right)=\max _{x \in[a, b]} f(x)$, hence, $f\left(c_{1}\right) \leq$ $f(x) \leq f\left(c_{2}\right)$ for all $x \in[a, b]$. If $f\left(c_{1}\right)=f\left(c_{2}\right)$, then $f(x) \equiv f\left(c_{1}\right)=f\left(c_{2}\right)$ for all $x \in[a, b]$, so $f^{\prime}(x) \equiv 0$ for all $x \in(a, b)$.
Otherwise, suppose that $f\left(c_{1}\right)<f\left(c_{2}\right)$. Since $f(a)=f(b)$, we have $c_{1} \in(a, b)$ or $c_{2} \in(a, b)$. We may assume that $c_{1} \in(a, b)$. Then $x=c_{1}$ is a local minimum point of f. Therefore, $f^{\prime}\left(c_{1}\right)=0$ by using Proposition 1.10.

Theorem 1.12. Main Value Theorem: If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and is differentiable on (a, b), then there is a point $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
Proof. Define a function $\varphi:[a, b] \rightarrow \mathbb{R}$ by

$$
\varphi(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

for $x \in[a, b]$. Note that the function φ is continuous on $[a, b]$ with $\varphi(a)=\varphi(b)=0$, in addition, $\varphi^{\prime}(x)$ exists for all $x \in(a, b)$. The Rolle's Theorem implies that there is a point $c \in(a, b)$ such that

$$
0=\varphi^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

The proof is complete.
Corollary 1.13. Assume that $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function and is differentiable on (a, b). If $f^{\prime} \equiv 0$ on (a, b), then f is a constant function.

Proof. Fix any point $z \in(a, b)$. Let $x \in(z, b]$. By using the Mean Value Theorem, there is a point $c \in(z, x)$ such that $f(x)-f(z)=f^{\prime}(c)(x-z)$. If $f^{\prime} \equiv 0$ on (a, b), so $f(x)=f(z)$ for all $x \in[z, b]$. Similarly, we have $f(x)=f(z)$ for all $x \in[a, z]$. The proof is complete.

Definition 1.14. We call a function f is a C^{1}-function on I if $f^{\prime}(x)$ exists and continuous on I. In addition, we define the n-derivatives of f by $f^{(n)}(x):=f^{(n-1)}(x)$ for $n \geq 2$, provided it exists. In this case, we say that f is a C^{n}-function on I. In particular, we call f a C^{∞}-function (or smooth function) if f is a C^{n}-function for all $n=1,2 \ldots$.
For example, the exponential function $\exp x$ is a very important example of smooth function on \mathbb{R}.
Corollary 1.15. Inverse Mapping Theorem: Let f be a C^{1}-function on an open interval I and let $c \in I$. Assume that $f^{\prime}(c) \neq 0$. Then there is $r>0$ such that the function f is a strictly monotone function on $(c-r, c+r) \subseteq I$. If we let $J:=f(c-r, c+r))$, then the inverse function $g:=f^{-1}: J \rightarrow$ $(c-r, c+r)$ is also a C^{1}-function.
Proof. We may assume that $f^{\prime}(c)>0 . f^{\prime}(x)$ is continuous on I, so there is $r>0$ such that $f^{\prime}(x)>0$ for all $x \in(c-r, c+r) \subseteq I$. For any x_{1} and x_{2} in $(c-r, c+r)$ with $x_{1}<x_{2}$, by using the Mean Value Theorem, we have $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(v)\left(x_{2}-x_{1}\right)$ for some $v \in\left(x_{1}, x_{2}\right)$, and hence $f\left(x_{2}\right)>f\left(x_{1}\right)$. Therefore the restriction of f on $(c-r, c+r)$ is a strictly increasing function, thus, it is an injection. Let $J:=f((c-r, c+r))$. Then J is an interval by the Immediate Value Theorem. Moreover, J is an open interval because f is strictly increasing. Also, if we let $g=f^{-1}$ on J, then g is continuous on J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore, by Proposition 1.7, we see that $g^{\prime}(y)$ exists on J and $g^{\prime}(y)=\frac{1}{f^{\prime}(x)}$ for $y=f(x)$ and $x \in(c-r, c+r)$. Therefore, g is a C^{1} function on J. The proof is complete.

Proposition 1.16. Cauchy Mean Value Theorem: Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions with $g(a) \neq g(b)$. Assume that f, g are differentiable functions on (a, b) and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is a point $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.
Proof. Define a function ψ on $[a, b]$ by $\psi(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$ for $x \in[a, b]$. Then by using the similar argument as in the Mean Value Theorem, the result follows.

Theorem 1.17. Lagrange Remainder Theorem: Let f be a $C^{(n+1)}$ function defined on (a, b). Let $x_{0} \in(a, b)$. Then for each $x \in(a, b)$, there is a point c between x_{0} and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Proof. We may assume that $x_{0}<x<b$. Case: We first assume that $f^{(k)}\left(x_{0}\right)=0$ for all $k=0,1, \ldots, n$. Put $g(t)=\left(t-x_{0}\right)^{n+1}$ for $t \in\left[x_{0}, x\right]$. Then $g^{\prime}(t)=(n+1)\left(t-x_{0}\right)^{n}$ and $g\left(x_{0}\right)=0$. Then by the Cauchy Mean Value Theorem, there is $x_{1} \in\left(x_{0}, x\right)$ such that $\frac{f(x)}{g(x)}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}$. Using the same step for f^{\prime} and g^{\prime} on $\left[x_{0}, x_{1}\right]$, there is $x_{2} \in\left(x_{0}, x_{1}\right)$ such that $\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}=\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{1}\right)-g^{\prime}\left(x_{0}\right)}=\frac{f^{(2)}\left(x_{2}\right)}{g(2)\left(x_{2}\right)}$. To repeat the same step, there are $x_{1}, x_{2}, \ldots, x_{n+1}$ in (a, b) such that $x_{k} \in\left(x_{0}, x_{k-1}\right)$ for $k=1,2, \ldots, n+1$ and

$$
\frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}=\cdots=\frac{f^{(n+1)}\left(x_{n+1}\right)}{g^{(n+1)}\left(x_{n+1}\right)} .
$$

In addition, note that $g^{n+1}\left(x_{n+1}\right)=(n+1)$!. Therefore, we have $\frac{f(x)}{g(x)}=\frac{f^{(n+1)}\left(x_{n+1}\right)}{(n+1)!}$, and hence $f(x)=\frac{f^{(n+1)}\left(x_{n+1}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$. Note $x_{n+1} \in\left(x_{0}, x\right)$ and thus, the result holds for this case.

For the general case, put $G(x)=f(x)-\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$ for $x \in(a, b)$. Note that we have $G\left(x_{0}\right)=G^{\prime}\left(x_{0}\right)=\cdots=G^{(n)}\left(x_{0}\right)=0$. Then by the Claim above, there is a point $c \in\left(x_{0}, x\right)$ such that $G(x)=\frac{G^{(n+1)}(c)}{(n+1)!}$. Since $G^{(n+1)}(c)=f^{(n+1)}(c), f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}$. The proof is complete.

Example 1.18. Recall that the exponential function e^{x} is defined by

$$
e^{x}:=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}:=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{x^{k}}{k!}
$$

for $x \in \mathbb{R}$. Note that the above limit always exists for all $x \in \mathbb{R}$ (shown in the last chapter). Show that the natural base e is an irrational number.
Put $f(x):=e^{x}$ for $x \in \mathbb{R}$. It is a known fact f is a C^{∞} function and $f^{(n)}(x)=e^{x}$ for all $x \in \mathbb{R}$. Fix any $x>0$. Then by the Lagrange Theorem, for each positive integer n, there is $c_{n} \in(0, x)$ such that

$$
f(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}+\frac{e^{c_{n}}}{(n+1)!} x^{n+1} .
$$

In particular, taking $x=1$, we have

$$
0<\frac{e^{c_{n}}}{(n+1)!}=e-\sum_{k=0}^{n} \frac{1}{k!}<\frac{3}{(n+1)!}
$$

for all positive integer n. Now if $e=p / q$ for some positive integers p and q, and thus, we have

$$
0<\frac{p}{q}-\sum_{k=0}^{n} \frac{1}{k!}<\frac{3}{(n+1)!}
$$

for all $n=1,2 \ldots$ Now we can choose n large enough such that $(n!) \frac{p}{q} \in \mathbb{N}$. It leads to a contradiction because we have

$$
0<(n!) \frac{p}{q}-(n!) \sum_{k=0}^{n} \frac{1}{k!}<\frac{3(n!)}{(n+1)!}=\frac{3}{n+1}<1 .
$$

Therefore, e is irrational.
Proposition 1.19. Let f be a C^{2} function on an open interval I and $x_{0} \in I$. Assume that $f^{\prime}\left(x_{0}\right)=0$. Then f has local maximum (resp. local minimum) at x_{0} if $f^{(2)}\left(x_{0}\right)<0\left(\right.$ resp. $\left.f^{(2)}\left(x_{0}\right)>0\right)$.
Proof. We assume that $f^{(2)}\left(x_{0}\right)>0$. We want to show that x_{0} is a local minimum point of f. The proof of another case is similar. Note that for any $x \in I \backslash\left\{x_{0}\right\}$. Then by the Lagrange Theorem, there is a point c between x_{0} and x such that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2}=f\left(x_{0}\right)+\frac{1}{2} f^{(2)}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

$f^{(2)}$ is continuous at x_{0} and $f^{(2)}\left(x_{0}\right)>0$, and so there is $r>0$ such that $f^{(2)}(x)>0$ for all $x \in\left(x_{0}-r, x_{0}+r\right) \subseteq I$. Therefore, we have

$$
f(x)=f\left(x_{0}\right)+\frac{1}{2} f^{(2)}(x)\left(x-x_{0}\right)^{2} \geq f\left(x_{0}\right)
$$

for all $x \in\left(x_{0}-r, x_{0}+r\right)$ and thus, x_{0} is a local minimum point of f as desired.

Proposition 1.20. L'Hospital's Rule: Let f and g be the differentiable functions on (a, b) and let $c \in(a, b)$ Assume that $f(c)=g(c)=0$, in addition, $g^{\prime}(x) \neq 0$ and $g(x) \neq 0$ for all $x \in(a, b) \backslash\{c\}$. If the limit $L:=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then so does $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$, moreover, we have $L=\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$.
Proof. Fix $c<x<b$. Then by the Cauchy Mean Value Theorem, there is a point $x_{1} \in(c, x)$ such that

$$
\frac{f(x)}{g(x)}=\frac{f(x)-f(c)}{g(x)-g(c)}=\frac{f^{\prime}\left(x_{1}\right)}{g^{\prime}\left(x_{1}\right)}
$$

$x_{1} \in(c, x)$, so if $L:=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists, then $\lim _{x \rightarrow c+} \frac{f(x)}{g(x)}$ exists and is equal to L.
Similarly, we also have $\lim _{x \rightarrow c-} \frac{f(x)}{g(x)}=L$. The proof is finished.

Proposition 1.21. Let f be a function on (a, b) and let $c \in(a, b)$.
(i) If $f^{\prime}(c)$ exists, then the following limit exists (also called the symmetric derivatives of f at c):

$$
f^{\prime}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-f(c-t)}{2 t}
$$

(ii) If $f^{(2)}(c)$ exists, then

$$
f^{(2)}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}
$$

Proof. For showing (i), note that we have

$$
f^{\prime}(c)=\lim _{t \rightarrow 0+} \frac{f(c+t)-f(c)}{t}=\lim _{t \rightarrow 0-} \frac{f(c+t)-f(c)}{t}
$$

Putting $t=-s$ into the second equality above, we see that

$$
f^{\prime}(c)=\lim _{s \rightarrow 0+} \frac{f(c-s)-f(c)}{-s}
$$

To sum up the two equations above, we have

$$
f^{\prime}(c)=\lim _{t \rightarrow 0+} \frac{f(c+t)-f(c-t)}{2 t}
$$

Similarly, we have $f^{\prime}(c)=\lim _{t \rightarrow 0-} \frac{f(c+t)-f(c-t)}{2 t}$. Part (i) follows.
For showing Part $(i i)$, let $h(t):=f(c+t)-2 f(c)+f(c-t)$ for $t \in \mathbb{R}$. Then $h(0)=0$ and $h^{\prime}(t)=$ $f^{\prime}(c+t)-f^{\prime}(c-t)$. By using the L'Hospital's Rule and Part (i), we have

$$
\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}=\lim _{t \rightarrow 0} \frac{h^{\prime}(t)}{\left(t^{2}\right)^{\prime}}=\lim _{t \rightarrow 0} \frac{f^{\prime}(c+t)-f^{\prime}(c-t)}{2 t}=f^{(2)}(c)
$$

The proof is complete.

Definition 1.22. A function f defined on (a, b) is said to be convex if for any pair $a<x_{1}<x_{2}<b$, we have

$$
f\left((1-t) x_{1}+t x_{2}\right) \leq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)
$$

for all $t \in[0,1]$.

Proposition 1.23. Let f be a C^{2} function on (a, b). Then f is a convex function if and only if $f^{(2)}(x) \geq 0$ for all $x \in(a, b)$.

Proof. For showing (\Rightarrow) : assume that f is a convex function. Fix a point $c \in(a, b) . f$ is convex, so we have $f(c)=f\left(\frac{1}{2}(c+t)+\frac{1}{2}(c-t)\right) \leq \frac{1}{2} f(c+t)+\frac{1}{2} f(c-t)$ for all $t \in \mathbb{R}$ with $c \pm t \in(a, b)$. By Proposition 1.21, we have

$$
f^{(2)}(c)=\lim _{t \rightarrow 0} \frac{f(c+t)-2 f(c)+f(c-t)}{t^{2}}
$$

Therefore, we have $f^{(2)}(c) \geq 0$.
For (\Leftarrow), assume that $f^{(2)}(x) \geq 0$ for all $x \in(a, b)$. Fix $a<x_{1}<x_{2}<b$ and $t \in[0,1]$. Let $c:=(1-t) x_{1}+t x_{2}$. Then by the Lagrange Reminder Theorem, there are points $z_{1} \in\left(x_{1}, c\right)$ and $z_{2} \in\left(c, x_{2}\right)$ such that

$$
f\left(x_{2}\right)=f(c)+f^{\prime}(c)\left(x_{2}-c\right)+\frac{1}{2} f^{(2)}\left(z_{2}\right)\left(x_{2}-c\right)^{2}
$$

and

$$
f\left(x_{1}\right)=f(c)+f^{\prime}(c)\left(x_{1}-c\right)+\frac{1}{2} f^{(2)}\left(z_{1}\right)\left(x_{1}-c\right)^{2} .
$$

These two equations implies that

$$
(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)=f(c)+(1-t) \frac{1}{2} f^{(2)}\left(z_{1}\right)\left(x_{1}-c\right)^{2}+t \frac{1}{2} f^{(2)}\left(z_{2}\right)\left(x_{2}-c\right)^{2} \geq f(c)
$$

since $f^{(2)}\left(z_{1}\right)$ and $f^{(2)}\left(z_{2}\right)$ both are non-negative. Thus, f is convex.

Corollary 1.24. Let $p>0$. The function $f(x):=x^{p}$ is convex on $(0, \infty)$ if and only if $p \geq 1$.
Proof. Note that $f^{(2)}(x)=p(p-1) x^{p-2}$ for all $x>0$. Then the result follows immediately from Proposition 1.23.

Proposition 1.25. Netwon's Method: Let f be a continuous real-valued function defined on $[a, b]$ with $f(a)<0<f(b)$ and $f(z)=0$ for some $z \in(a, b)$. Assume that f is a C^{2} function on (a, b) and $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is $\delta>0$ with $J:=[z-\delta, z+\delta] \subseteq[a, b]$ which have the following property:
if we fix any $x_{1} \in J$ and let

$$
\begin{equation*}
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1.1}
\end{equation*}
$$

for $n=1,2, \ldots$, then we have $z=\lim x_{n}$.
Proof. We first choose $r>0$ such that $[z-r, z+r] \subseteq(a, b)$. We fix any point $x_{1} \in(z-r, z+r)$ with $x_{1} \neq z$. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x_{1} such that

$$
0=f(z)=f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right)\left(z-x_{1}\right)+\frac{1}{2} f^{(2)}(\xi)\left(z-x_{1}\right)^{2} .
$$

This, together with Eq 1.1 above, we have

$$
x_{2}-x_{1}=-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=z-x_{1}+\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2} .
$$

Therefore, we have

$$
\begin{equation*}
x_{2}-z=\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2} . \tag{1.2}
\end{equation*}
$$

Note that the functions $f^{\prime}(x)$ and $f^{(2)}(x)$ are continuous on $[z-r, z+r]$ and $f^{\prime}(x) \neq 0$, hence, there is $M>0$ such that $\left|\frac{f^{2)}(u)}{2 f^{\prime}(v)}\right| \leq M$ for all $u, v \in[z-r, z+r]$. Then the Eq 1.2 implies that

$$
\begin{equation*}
\left|x_{2}-z\right|=\left|\frac{f^{(2)}(\xi)}{2 f^{\prime}\left(x_{1}\right)}\left(z-x_{1}\right)^{2}\right| \leq M\left(z-x_{1}\right)^{2} . \tag{1.3}
\end{equation*}
$$

Choose $\delta>0$ such that $M \delta<1$ and $J:=[z-\delta, z+\delta] \subseteq(z-r, z+r)$. Note that Now we take any $x_{1} \in J$. Eq 1.3 implies that $\left|x_{2}-z\right| \leq M \cdot\left|z-x_{1}\right|^{2} \leq(M \delta) \cdot\left|x_{1}-z\right|$. By using Eq 1.1 inductively, we have a sequence $\left(x_{n}\right)$ in J such that

$$
\left|x_{n+1}-z\right| \leq M \cdot\left|z-x_{n}\right|^{2} \leq(M \delta) \cdot\left|x_{n}-z\right|
$$

for all $n=1,2 \ldots$ Therefore, we have

$$
\left|x_{n+1}-z\right| \leq(M \delta)^{n} \cdot\left|x_{1}-z\right|
$$

for all $n=1,2 \ldots$, thus, $\lim x_{n}=z$. The proof is complete.

Appendix: Differentiability on \mathbb{R}^{n}

Recall that for each element $x=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}, write $\|x\|:=\sqrt{\left|x_{1}\right|^{2}+\cdots+\left|x_{n}\right|^{2}}$ (call the norm of x). And for $a \in \mathbb{R}^{n}$ and $r>0$, put $B(a, r):=\left\{x \in \mathbb{R}^{n}:\|x-a\|<r\right\}$.

Lemma 1.26. Every linear map on \mathbb{R}^{n} is continuous.
Proof. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the natural basis for \mathbb{R}^{n}. It suffices to show that the map T is continuous at 0 (why?). Let $\left(x_{i}\right)$ be a sequence in \mathbb{R}^{n} that converges to 0 . If we write $x_{i}:=\sum_{k=1}^{n} t_{i}(k) e_{k}$, then $\lim _{i \rightarrow \infty} t_{i}(k)=0$ for all $k=1, \ldots, n$. This implies that $\lim _{i \rightarrow \infty} T\left(x_{i}\right)=\sum_{k=1}^{n} \lim _{i \rightarrow \infty} t_{i}(k) T e_{k}=0$ as desired.

Remark 1.27. Notice that a linear map on an infinite dimensional space may not be continuous. For example, we consider an infinite dimensional vector space $E:=\bigcup_{n=1}^{\infty} \mathbb{R}^{n}$ whose norm is given by $\|x\|=\sum_{k=1}^{\infty} x(k)^{2}$ for $x=(x(k))_{k=1}^{\infty} \in E$. Define $T: E \rightarrow E$ by $T x(k):=k x(k)$ for $k=1,2, \ldots$ for $x \in E$. Then T is a linear map but it is discontinuous at 0 (why?).
If you want to know more details about the infinite dimensional case, take the course of Functional Analysis in future.

Definition 1.28. Let U be an open subset of \mathbb{R}^{n} and let $f: U \rightarrow \mathbb{R}^{m}$ be a mapping. We say that f is differentiable at a point $a \in U$ if there is a (continuous) linear map $L(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
\lim _{v \rightarrow 0} \frac{\|f(a+v)-f(a)-L(a)(v)\|_{\mathbb{R}^{m}}}{\|v\|_{\mathbb{R}^{n}}}=0 . \tag{1.4}
\end{equation*}
$$

$L(a)$ is called a differential of f at a. f is said to be differentiable on U if it is differentiable at every point in U.

Proposition 1.29. We keep the notation as given in Definition 1.28. Then we have the followings.
(i) f is differentiable at $a \in U$ if and only if there are a linear map $L(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and a function $\alpha(a, \cdot): U \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{equation*}
f(x)=f(a)+L(a)(x-a)+\alpha(a, x) \quad \text { for all } x \in U \text { and } \quad \lim _{x \rightarrow a} \frac{\|\alpha(a, x)\|}{\|x-a\|}=0 . \tag{1.5}
\end{equation*}
$$

(ii) If f is differentiable at a, then f is continuous at a.
(iii) A differential of f at $a \in U$ is unique if it exists.

From now on, we write $f^{\prime}(a)$ for the differential of f at a.
Proof. For Part $(i)(\Rightarrow)$, if f is differentiable at a, then we put

$$
\alpha(a, x):=f(x)-f(a)-L(a)(x-a)
$$

for $x \in U$. Then Eq 1.4 implies that $\lim _{x \rightarrow a} \frac{\|\alpha(a, x)\|}{\|x-a\|}=0$ as desired. The converse is clear.
For Part (ii), we keep the notation as in Part (i). Since $\lim _{x \rightarrow a} \frac{\|\alpha(a, x)\|}{\|x-a\|}=0$, we have $\lim _{x \rightarrow a}\|\alpha(a, x)\|=$ 0 . Thus, $\lim _{x \rightarrow a}(f(x)-f(a))=0$ by Eq 1.5 because every linear map is continuous. For showing (iii), let $L_{1}(a)$ and $L_{2}(a)$ be the linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}. Let $\alpha_{1}(a, \cdot)$ and $\alpha_{2}(a, \cdot)$ be the functions given as in Part (i). From this we have

$$
L_{1}(a)(x-a)+\alpha_{1}(a, x)=L_{2}(a)(x-a)+\alpha_{2}(a, x)
$$

for all $x \in U$. Now choose $r>0$ such that $B(a, r) \subseteq U$ and so we have $L_{1}(a)(v)+\alpha_{1}(a, a+v)=$ $L_{2}(a)(v)+\alpha_{2}(a, a+v)$ for all $v \in B(0, r)$. Now if we fix $0 \neq v \in B(0, r)$, then we have

$$
L_{1}(a)(t v)+\alpha_{1}(a, a+t v)=L_{2}(a)(t v)+\alpha_{2}(a, a+t v)
$$

for all $0<t \leq 1$. From this, taking $t \rightarrow 0+$, we have $L_{1}(a)\left(\frac{v}{\|v\|}\right)=L_{2}(a)\left(\frac{v}{\|v\|}\right)$ and thus, $L_{1}(a)(v)=$ $L_{2}(a)(v)$ for all $0 \neq v \in B(0, r)$. Then by the linearity of $L_{1}(a)$ and $L_{2}(a)$, we conclude that $L_{1}(a)(v)=$ $L_{2}(a)(v)$ for all $v \in \mathbb{R}^{n}$. The proof is complete.

Proposition 1.30. Chain Rule: Let $f: U \rightarrow V$ and $g: V \rightarrow \mathbb{R}^{l}$ be the mappings where U and V are the open subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Let $a \in U$ and put $b:=f(a)$. If $f^{\prime}(a)$ and $g^{\prime}(b)$ both exist, then $(g \circ f)^{\prime}(a)$ exists and $(g \circ f)^{\prime}(a)=g^{\prime}(b) \circ f^{\prime}(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}$.

Proof. Put $y=f(x)$. Let $\alpha(a, \cdot): U \rightarrow \mathbb{R}^{n}$ and $\beta(b, \cdot): V \rightarrow \mathbb{R}^{l}$ be the functions given as in Proposition 1.29 above. Notice that we have

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\alpha(a, x)
$$

for all $x \in U$ and

$$
g(y)=g(b)+g^{\prime}(b)(y-b)+\beta(b, y)
$$

for all $y \in V$. From this we have

$$
\begin{aligned}
g \circ f(x) & =g \circ f(a)+g^{\prime}(b)(f(x)-f(a))+\beta(f(a), f(x)) \\
& =g \circ f(a)+g^{\prime}(b) f^{\prime}(a)(x-a)+g^{\prime}(b)(\alpha(a, x))+\beta(f(a), f(x))
\end{aligned}
$$

for all $x \in U$. Let

$$
\gamma(a, x):=g^{\prime}(b)(\alpha(a, x))+\beta(f(a), f(x))
$$

for $x \in U$. Then by Proposition 1.29, we need to show that

$$
\lim _{x \rightarrow a} \frac{\|\gamma(a, x)\|}{\|x-a\|}=0
$$

Since $\lim _{x \rightarrow a} \frac{\alpha(a, x)}{\|x-a\|}=0$ and every linear map is continuous, we have $\lim _{x \rightarrow a} g^{\prime}(b)\left(\frac{\alpha(a, x)}{\|x-a\|}\right)=0$. Hence, it suffices to show that $\lim _{x \rightarrow a} \frac{\beta(b, y)}{\|x-a\|}=0$.
In fact, let $\varepsilon>0$, then by the construction of $\beta(b, y)$, there is $\delta_{1}>0$ such that

$$
\frac{\|\beta(b, y)\|}{\|b-y\|}<\varepsilon \quad \text { whenever } \quad 0<\|y-b\|<\delta_{1}
$$

Since f is continuous at a, there is $\delta_{2}>0$ such that $\|y-b\|<\delta_{1}$ whenever $0<\|x-a\|<\delta_{2}$. On the other hand, we have

$$
\frac{b-y}{\|x-a\|}=f^{\prime}(a)\left(\frac{x-a}{\|x-a\|}\right)+\frac{\alpha(a, x)}{\|x-a\|} .
$$

for all $x \in U \backslash\{a\}$. Since $f^{\prime}(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous and the unit sphere $S_{n-1}:=\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$ is compact, we have

$$
\left\|f^{\prime}(a)\left(\frac{x-a}{\|x-a\|}\right)\right\| \leq \sup _{v \in S_{n-1}}\left\|f^{\prime}(a)(v)\right\|<\infty
$$

for all $x \in U \backslash\{a\}$. Also, there is $0<\delta<\delta_{2}$ such that $x \in U$ and $\frac{\|\alpha(a, x)\|}{\|x-a\|}<1$ as $0<\|x-a\|<\delta$. Thus, there is $M>0$ such that $\frac{\|b-y\|}{\|x-a\|} \leq M$ whenever $0<\|x-a\|<\delta$. This implies that if $y=f(x) \neq b$ and $0<\|x-a\|<\delta$, then we have

$$
\frac{\|\beta(b, y)\|}{\|x-a\|}=\frac{\|\beta(b, y)\|}{\|b-y\|} \frac{\|b-y\|}{\|x-a\|} \leq \varepsilon M .
$$

Notice that $\beta(b, y)=0$ if $y=b$. Therefore, if $0<\|x-a\|<\delta$, then we have

$$
\frac{\|\beta(b, y)\|}{\|x-a\|} \leq \varepsilon M .
$$

The proof is complete.
To end this appendix, we are going to define the higher order differentials of f. Before giving the definition, let us recall the notation of multilinear maps. Let E and F be vector spaces. A mapping $T: E \times \cdots \times E(r$-copies $) \rightarrow F$ is called a r-linear map if T is linear for each variable, more precisely, for $1 \leq k \leq r$ and $x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{r} \in E$, the map $x \in E \mapsto T\left(x_{1}, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_{r}\right) \in F$ is linear. Write $L^{(r)}(E, F)$ for the set of all r-linear maps. Clearly, $L^{(r)}(E, F)$ is a vector space.

Lemma 1.31. $L^{(r)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\mathbb{R}^{n^{r} m}$ for $r=1,2, \ldots$ Consequently, the space $L^{(r)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ have the norm structure induced by $\mathbb{R}^{n^{r} m}$.
Proof. Clearly, we have $L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=M_{m \times n}(\mathbb{R})=\mathbb{R}^{n m}$. Notice that we have $L^{(2)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=$ $L^{(1)}\left(\mathbb{R}^{n}, L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\right)$ and so, $L^{(2)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\mathbb{R}^{n^{2} m}$. Using induction on r, we see that $L^{(r)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=$ $\mathbb{R}^{n^{r} m}$.

Definition 1.32. We keep the notation as in Definition 1.28. Notice that if f is differentiable on U, then the differential of f gives a map

$$
f^{\prime}: a \in U \mapsto f^{\prime}(a) \in L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

Note that the space $L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ have the natural norm structure given by Lemma 1.31, that is, $L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\mathbb{R}^{n m}$. If f^{\prime} is differentiable on U in the sense of Definition 1.28, then for each $a \in U$, it is naturally led to define

$$
f^{(2)}(a):=\left(f^{\prime}\right)^{\prime}(a) \in L^{(1)}\left(\mathbb{R}^{n}, L^{(1)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)\right)=L^{(2)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\mathbb{R}^{n^{2} m}
$$

Thus, one can define inductively the r-th differential of f at a as the following

$$
f^{(r)}(a):=\left(f^{r-1}\right)^{\prime}(a) \in L^{(r)}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)
$$

2. Riemann Integrable Functions

We will use the following notation throughout this chapter.
(i): All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$ and $m \leq f \leq M$ on $[a, b]$.
(ii): Let $P: a=x_{0}<x_{1}<\ldots<x_{n}=b$ denote a partition on $[a, b]$; Put $\Delta x_{i}=x_{i}-x_{i-1}$ and $\|P\|=\max \Delta x_{i}$.
(iii): $M_{i}(f, P):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, P):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\}\right.\right.$.

Set $\omega_{i}(f, P)=M_{i}(f, P)-m_{i}(f, P)$.
(iv): (the upper sum of f): $U(f, P):=\sum M_{i}(f, P) \Delta x_{i}$
(the lower sum of f). L(f,P) $:=\sum m_{i}(f, P) \Delta x_{i}$.
Remark 2.1. It is clear that for any partition on $[a, b]$, we always have
(i) $m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)$.
(ii) $L(-f, P)=-U(f, P)$ and $U(-f, P)=-L(f, P)$.

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on $[a, b]$. We have the following assertions.
(i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
(ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f, P) \leq L(f, Q)$ if $P \subseteq Q$. By using the induction on $l:=\# Q-\# P$, it suffices to show that $L(f, P) \leq L(f, Q)$ as $l=1$. Let $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $Q=P \cup\{c\}$. Then $c \in\left(x_{s-1}, x_{s}\right)$ for some s. Notice that we have

$$
m_{s}(f, P) \leq \min \left\{m_{s}(f, Q), m_{s+1}(f, Q)\right\}
$$

So, we have

$$
m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \leq m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right)
$$

This gives the following inequality as desired.

$$
\begin{equation*}
L(f, Q)-L(f, P)=m_{s}(f, Q)\left(c-x_{s-1}\right)+m_{s+1}(f, Q)\left(x_{s}-c\right)-m_{s}(f, P)\left(x_{s}-x_{s-1}\right) \geq 0 . \tag{2.1}
\end{equation*}
$$

Now by considering $-f$ in the Inequality 2.1 above, we see that $U(f, Q) \leq U(f, P)$.
For Part (ii), let P and Q be any pair of partitions on $[a, b]$. Notice that $P \cup Q$ is also a partition on [a,b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$
L(f, P) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, Q)
$$

The proof is complete.

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on $[a, b]$. The upper integral (resp. lower integral) of f over $[a, b]$, write $\overline{\int_{a}^{b}} f$ (resp. $\underline{\int_{a}^{b} f \text {), is defined by }}$

$$
\overline{\int_{a}^{b}} f=\inf \{U(f, P): P \text { is a partation on }[a, b]\}
$$

(resp.

$$
\left.\underline{\int_{a}^{b}} f=\sup \{L(f, P): P \text { is a partation on }[a, b]\} .\right)
$$

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, \leq) a directed set if for each pair of elements i_{1} and i_{2} in I, there is $i_{3} \in I$ such that $i_{1} \leq i_{3}$ and $i_{2} \leq i_{3}$.
A net in \mathbb{R} is a real-valued function f defined on a directed set I, write $f=\left(x_{i}\right)_{i \in I}$, where $x_{i}:=f(i)$ for $i \in I$.
We say that a net $\left(x_{i}\right)$ converges to a point $L \in \mathbb{R}$ (call a limit of $\left(x_{i}\right)$) if for any $\varepsilon>0$, there is $i_{0} \in I$ such that $\left|x_{i}-L\right|<\varepsilon$ for all $i \geq i_{0}$.
Using the similar argument as in the sequence case, a limit of $\left(x_{i}\right)$ is unique if it exists and we write $\lim _{i} x_{i}$ for its limits.

Example 2.5. Appendix: Using the notation given as before, let

$$
I:=\{P: P \text { is a partitation on }[a, b]\} .
$$

We say that $P_{1} \leq P_{2}$ for $P_{1}, P_{2} \in I$ if $P_{1} \subseteq P_{2}$. Clearly, I is a directed set with this order. If we put $u_{P}:=U((f, P)$, then we have

$$
\lim _{P} u_{P}=\overline{\int_{a}^{b}} f
$$

In fact, let $\varepsilon>0$. Then by the definition of an upper integral, there is $P_{0} \in I$ such that

$$
\overline{\int_{a}^{b}} f \leq U\left(f, P_{0}\right) \leq \overline{\int_{a}^{b}} f+\varepsilon
$$

Lemma 2.2 tells us that whenever $P \in I$ with $P \geq P_{0}$, we have $U(f, P) \leq U\left(f, P_{0}\right)$. Thus we have $\left|u_{P}-\overline{\int_{a}^{b}} f\right|<\varepsilon$ whenever $P \geq P_{0}$ as desired.

Proposition 2.6. Let f and g both are bounded functions on $[a, b]$. With the notation as above, we always have
(i)

$$
\underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f
$$

(ii) $\underline{\int_{a}^{b}}(-f)=-\overline{\int_{a}^{b}} f$.
(iii)

$$
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g .
$$

Proof. Part (i) follows from Lemma 2.2 at once.
Part (ii) is clearly obtained by $L(-f, P)=-U(f, P)$.
For proving the inequality $\underline{\int_{a}^{b} f+\underline{\int_{a}^{b}} g \leq \underline{\int_{a}^{b}}(f+g) \leq \text { first. It is clear that we have } L(f, P)+L(g, P) \leq}$ $L(f+g, P)$ for all partitions P on $[a, b]$. Now let P_{1} and P_{2} be any partition on $[a, b]$. Then by Lemma 2.2, we have

$$
L\left(f, P_{1}\right)+L\left(g, P_{2}\right) \leq L\left(f, P_{1} \cup P_{2}\right)+L\left(g, P_{1} \cup P_{2}\right) \leq L\left(f+g, P_{1} \cup P_{2}\right) \leq \int_{a}^{b}(f+g)
$$

So, we have

$$
\begin{equation*}
\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b} g} \leq \underline{\int_{a}^{b}}(f+g) \tag{2.2}
\end{equation*}
$$

As before, we consider $-f$ and $-g$ in the Inequality 2.2, we get $\overline{\int_{a}^{b}}(f+g) \leq \overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g$ as desired.

The following example shows the strict inequality in Proposition 2.6 (iii) may hold in general.

Example 2.7. Define a function $f, g:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ -1 & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}-1 & \text { if } x \in[0,1] \cap \mathbb{Q} \\ 1 & \text { otherwise }\end{cases}
$$

Then it is easy to see that $f+g \equiv 0$ and

$$
\overline{\int_{0}^{1}} f=\overline{\int_{0}^{1}} g=1 \quad \text { and } \quad \underline{\int_{0}} f=\underline{\int_{0}^{1}} g=-1 .
$$

So, we have

$$
-2=\underline{\int_{a}^{b}} f+\underline{\int_{a}^{b}} g<\underline{\int_{a}^{b}}(f+g)=0=\overline{\int_{a}^{b}}(f+g)<\overline{\int_{a}^{b}} f+\overline{\int_{a}^{b}} g=2 .
$$

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on $[a, b]$. We say that f is Riemann integrable over $[a, b]$ if $\overline{\int_{b}^{a}} f=\underline{\int_{a}^{b} f \text {. In this case, we write } \int_{a}^{b} f \text { for this common value and it is called the Riemann integral }}$ of f over $[a, b]$.
Also, write $R[a, b]$ for the class of Riemann integrable functions on $[a, b]$.

Proposition 2.9. With the notation as above, $R[a, b]$ is a vector space over \mathbb{R} and the integral

$$
\int_{a}^{b}: f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}
$$

defines a linear functional, that is, $\alpha f+\beta g \in R[a, b]$ and $\int_{a}^{b}(\alpha f+\beta g)=\alpha \int_{a}^{b} f+\beta \int_{a}^{b} g$ for all $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$.
Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \geq 0$, it is clear that $\overline{\int_{a}^{b}} \alpha f=\alpha \int_{a}^{b} f=\alpha \int_{a}^{b} f=$ $\alpha \underline{\int_{a}^{b}} f=\underline{\int_{a}^{b} \alpha f}$. Also, if $\alpha<0$, we have $\overline{\int_{a}^{b}} \alpha f=\alpha \underline{\int_{a}^{b}} f=\alpha \int_{a}^{b} f=\alpha \overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} \alpha f$. Therefore, we have $\int_{a}^{b} \alpha f=\alpha \int_{a}^{b} f$ for all $\alpha \in \mathbb{R}$. For showing $f+g \in R[a, b]$ and $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$, these will follows from Proposition 2.6 (iii) at once. The proof is finished.

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter.
For a partition $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ and $1 \leq i \leq n$, put

$$
\omega_{i}(f, P):=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in\left[x_{i-1}, x_{i}\right]\right\}
$$

It is easy to see that $U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}$.

Theorem 2.10. Let f be a bounded function on $[a, b]$. Then $f \in R[a, b]$ if and only if for all $\varepsilon>0$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ on $[a, b]$ such that

$$
\begin{equation*}
0 \leq U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}<\varepsilon \tag{2.3}
\end{equation*}
$$

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon>0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon$ and $\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$
\underline{\int_{a}^{b}} f-\varepsilon<L(f, Q) \leq L(f, P \cup Q) \leq U(f, P \cup Q) \leq U(f, P)<\overline{\int_{a}^{b}} f+\varepsilon
$$

Since $\int_{a}^{b} f=\overline{\int_{a}^{b}} f=\underline{\int_{a}^{b}} f$, we have $0 \leq U(f, P \cup Q)-L(f, P \cup Q)<2 \varepsilon$. So, the partition $P \cup Q$ is as desired.
Conversely, let $\varepsilon>0$, assume that the Inequality 2.3 above holds for some partition P. Notice that we have

$$
L(f, P) \leq \underline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} f \leq U(f, P)
$$

So, we have $0 \leq \overline{\int_{a}^{b}} f-\underline{\int_{a}^{b}} f<\varepsilon$ for all $\varepsilon>0$. The proof is finished.

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over $[a, b]$ if and only if the "size" of the discontinuous set of f is arbitrary small. See the Appendix 3 below for details.

Example 2.12. Let $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x)= \begin{cases}\frac{1}{p} & \text { if } x=\frac{q}{p}, \text { where } p, q \text { are relatively prime positive integers } \\ 0 & \text { otherwise }\end{cases}
$$

Then $f \in R[0,1]$.
(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q}=\left\{z_{1}, z_{2}, \ldots\right\}$. So, if we let $m(D)$ be the "size" of the set D, then $m(D)=m\left(\bigcup_{i=1}^{\infty}\left\{z_{i}\right\}\right)=\sum_{i=1}^{\infty} m\left(\left\{z_{i}\right\}\right)=0$, in here, you may think that the size of each set $\left\{z_{i}\right\}$ is 0 .)

Proof. Let $\varepsilon>0$. By Theorem 2.10, it aims to find a partition P on $[0,1]$ such that

$$
U(f, P)-L(f, P)<\varepsilon
$$

Notice that for $x \in[0,1]$ such that $f(x) \geq \varepsilon$ if and only if $x=q / p$ for a pair of relatively prime positive integers p, q with $\frac{1}{p} \geq \varepsilon$. Since $1 \leq q \leq p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f\left(\frac{q}{p}\right) \geq \varepsilon$. So, if we let $S:=\{x \in[0,1]: f(x) \geq \varepsilon\}$, then S is a finite subset
of $[0,1]$. Let L be the number of the elements in S. Then, for any partition $P: a=x_{0}<\cdots<x_{n}=1$, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\left(\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset}+\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset}\right) \omega_{i}(f, P) \Delta x_{i}
$$

Notice that if $\left[x_{i-1}, x_{i}\right] \cap S=\emptyset$, then we have $\omega_{i}(f, P) \leq \varepsilon$ and thus,

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S=\emptyset} \Delta x_{i} \leq \varepsilon(1-0)
$$

On the other hand, since there are at most $2 L$ sub-intervals $\left[x_{i-1}, x_{i}\right]$ such that $\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset$ and $\omega_{i}(f, P) \leq 1$ for all $i=1, \ldots, n$, so, we have

$$
\sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \omega_{i}(f, P) \Delta x_{i} \leq 1 \cdot \sum_{i:\left[x_{i-1}, x_{i}\right] \cap S \neq \emptyset} \Delta x_{i} \leq 2 L\|P\|
$$

We can now conclude that for any partition P, we have

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon+2 L\|P\|
$$

So, if we take a partition P with $\|P\|<\varepsilon /(2 L)$, then we have $\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq 2 \varepsilon$.
The proof is finished.

Proposition 2.13. Let f be a function defined on $[a, b]$. If f is either monotone or continuous on $[a, b]$, then $f \in R[a, b]$.
Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, we have $\omega_{i}(f, P)=f\left(x_{i}\right)-f\left(x_{i-1}\right)$. So, if $\|P\|<\varepsilon$, we have
$\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i}=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \Delta x_{i}<\|P\| \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=\|P\|(f(b)-f(a))<\varepsilon(f(b)-f(a))$.
Therefore, $f \in R[a, b]$ if f is monotone.
Suppose that f is continuous on $[a, b]$. Then f is uniform continuous on $[a, b]$. Then for any $\varepsilon>0$, there is $\delta>0$ such that $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ as $x, x^{\prime} \in[a, b]$ with $\left|x-x^{\prime}\right|<\delta$. So, if we choose a partition P with $\|P\|<\delta$, then $\omega_{i}(f, P)<\varepsilon$ for all i. This implies that

$$
\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \leq \varepsilon \sum_{i=1}^{n} \Delta x_{i}=\varepsilon(b-a)
$$

The proof is complete.

Proposition 2.14. We have the following assertions.
(i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
(ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $\left|\int_{a}^{b} f\right| \leq$ $\int_{a}^{b}|f|$.

Proof. For Part (i), it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_{a}^{b} f=\overline{\int_{a}^{b}} f \leq \overline{\int_{a}^{b}} g=\int_{a}^{b} g$.
For Part (ii), the integrability of $|f|$ follows immediately from Theorem 2.10 and the simple inequality $\left||f|\left(x^{\prime}\right)-|f|\left(x^{\prime \prime}\right)\right| \leq\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|$ for all $x^{\prime}, x^{\prime \prime} \in[a, b]$. Thus, we have $U(|f|, P)-L(|f|, P) \leq$
$U(f, P)-L(f, P)$ for any partition P on $[a, b]$.
Finally, since we have $-f \leq|f| \leq f$, by Part (i), we have $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|$ at once.

Lemma 2.15. Let g be a convex function defined on $[a, b]$. Then for $a<c<x<d<b$, we have

$$
\frac{g(x)-g(c)}{x-c} \leq \frac{g(d)-g(x)}{d-x}
$$

Consequently, if $a<x_{1}<x_{2}<x_{3}<x_{4}<b$, we have

$$
\begin{equation*}
\frac{g\left(x_{2}\right)-g\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{g\left(x_{4}\right)-g\left(x_{3}\right)}{x_{4}-x_{3}} . \tag{2.4}
\end{equation*}
$$

Proof. Let $\ell(x)$ be the straight line between the points $(c, g(c))$ and $(d, g(d))$. Then we have $g(x) \leq \ell(x)$ for all $x \in[c, d]$ by the convexity. This implies the following that we desired.

$$
\frac{g(x)-g(c)}{x-c} \leq \frac{\ell(x)-\ell(c)}{x-c}=\frac{\ell(d)-\ell(x)}{d-x} \leq \frac{g(d)-g(x)}{d-x} .
$$

Proposition 2.16. (Jensen's inequality): Let $g:\left[a^{\prime}, b^{\prime}\right] \longrightarrow \mathbb{R}$ be a convex function and $f \in$ $R([0,1])$ such that $f([0,1]) \subseteq[a, b] \subseteq\left(a^{\prime}, b^{\prime}\right)$ and $g \circ f \in R([0,1])$. Then we have

$$
g\left(\int_{0}^{1} f(x) d x\right) \leq \int_{0}^{1}(g \circ f)(x) d x
$$

Proof. Notice that if we let $c:=\int_{0}^{1} f$, then $c \in[a, b]$ and hence, $g(c)$ is defined. Notice that by Eq2.4 above the set $\left\{\frac{g(c)-g(x)}{c-x}: a^{\prime}<x<c\right\}$ is bounded above and so, $s:=\sup \left\{\frac{g(c)-g(y)}{c-y}: a^{\prime}<y<c\right\}$ is defined. Thus, we have

$$
g(c)-g(y) \leq s(c-y) \quad \text { for all } a^{\prime}<y<c .
$$

On the other hand, if $c<y_{1}<b^{\prime}$, then by Eq2.4 again we have

$$
\frac{g(c)-g(y)}{c-y} \leq \frac{g\left(y_{1}\right)-g(c)}{y_{1}-c} \quad \text { for all } a^{\prime}<y<c
$$

Hence, we have $s \leq \frac{g\left(y_{1}\right)-g(c)}{y_{1}-c}$ for all $c<y_{1}<b^{\prime}$. Thus, we have

$$
\begin{equation*}
g(c)-g(y) \leq s(c-y) \quad \text { for all } a^{\prime}<y<b^{\prime} \text { with } y \neq c \tag{2.5}
\end{equation*}
$$

Note that Eq 2.5 clearly holds for $y=c$. Thus, Eq2.5 is true for all $a^{\prime}<y<b^{\prime}$. Now if put $y=f(x)$, then we have $g(c)+s(f(x)-c) \leq(g \circ f)(x)$ for all $x \in[0,1]$. This gives

$$
g(c)=g(c)+s \int_{0}^{1}(f(x)-c) d x \leq \int_{0}^{1}(g \circ f)(x) d x .
$$

The proof is complete.

Example 2.17. Let a_{1}, \ldots, a_{n} be any real numbers. Let $p>1$. Then we have

$$
\left(\frac{\left|a_{1}\right|+\cdots\left|a_{n}\right|}{n}\right)^{p} \leq \frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right|^{p} .
$$

To see this, , the results obtained by applying the Jensen's inequality for the convex function $g(x)=x^{p}$ for $x \geq 0$ and $f(t):=\left|a_{k}\right|$ for $t \in[(k-1) / n, k / n)$ for $k=1, \ldots, n$.

Proposition 2.18. Let $a<c<b$. We have $f \in R[a, b]$ if and only if the restrictions $\left.f\right|_{[a, c]} \in R[a, c]$ and $\left.f\right|_{[c, b]} \in R[c, b]$. In this case we have

$$
\begin{equation*}
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f \tag{2.6}
\end{equation*}
$$

Proof. Let $f_{1}:=\left.f\right|_{[a, c]}$ and $f_{2}:=\left.f\right|_{[c, b]}$.
It is clear that we always have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(P, f)-L(f, P)
$$

for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$ with $P=P_{1} \cup P_{2}$.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon>0$, there is a partition Q on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$ by Theorem 2.10 . Notice that there are partitions P_{1} and P_{2} on $[a, c]$ and $[c, b]$ respectively such that $P:=Q \cup\{c\}=P_{1} \cup P_{2}$. Thus, we have

$$
U\left(f_{1}, P_{1}\right)-L\left(f_{1}, P_{1}\right)+U\left(f_{2}, P_{2}\right)-L\left(f_{2}, P_{2}\right)=U(f, P)-L(f, P) \leq U(f, Q)-L(f, Q)<\varepsilon
$$

So, we have $f_{1} \in R[a, c]$ and $f_{2} \in R[c, b]$.
It remains to show the Equation 2.6 above. Notice that for any partition P_{1} on $[a, c]$ and P_{2} on $[c, b]$, we have

$$
L\left(f_{1}, P_{1}\right)+L\left(f_{2}, P_{2}\right)=L\left(f, P_{1} \cup P_{2}\right) \leq \underline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

So, we have $\int_{a}^{c} f+\int_{c}^{b} f \leq \int_{a}^{b} f$. Then the inverse inequality can be obtained at once by considering the function $-f$. Then the resulted is obtained by using Theorem 2.10.

Proposition 2.19. Let f and g be Riemann integrable functions defined ion $[a, b]$. Then the pointwise product function $f \cdot g \in R[a, b]$.
Proof. We first show that the square function f^{2} is Riemann integrable. In fact, if we let $M=$ $\sup \{|f(x)|: x \in[a, b]\}$, then we have $\omega_{k}\left(f^{2}, P\right) \leq 2 M \omega_{k}(f, P)$ for any partition $P: a=x_{0}<\cdots<$ $a_{n}=b$ because we always have $\left|f^{2}(x)-f^{2}\left(x^{\prime}\right)\right| \leq 2 M\left|f(x)-f\left(x^{\prime}\right)\right|$ for all $x, x^{\prime} \in[a, b]$. Then by Theorem 2.10, the square function $f^{2} \in R[a, b]$.
This, together with the identity $f \cdot g=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$. The result follows.

Remark 2.20. In the proof of Proposition 2.19, we have shown that if $f \in R[a, b]$, then so is its square function f^{2}. However, the converse does not hold. For example, if we consider $f(x)=1$ for $x \in \mathbb{Q} \cap[0,1]$ and $f(x)=-1$ for $x \in \mathbb{Q}^{c} \cap[0,1]$, then $f \notin R[0,1]$ but $f^{2} \equiv 1$ on $[0,1]$.

Proposition 2.21. Assume that $f:[a, b] \longrightarrow[c, d]$ is integrable and $g:[c, d] \longrightarrow \mathbb{R}$ is continuous. Then the composition $g \circ f \in R[a, b]$.

Proof. Let $\varepsilon>0$. Note that g is uniformly continuous on $[c, d]$ because g is continuous on $[c, d]$. Then there is $\delta>0$ such that $\left|g(y)-g\left(y^{\prime}\right)\right|<\varepsilon$ whenever $y, y^{\prime} \in[c, d]$ with $\left|y-y^{\prime}\right|<\delta$. On the other hand, since $f \in R[a, b]$, there is a partition P on $[a, b]$ such that $\sum \omega_{k}(f, P) \Delta x_{k}<\varepsilon \delta$. Hence, we have

$$
\delta \sum_{k: \omega_{k}(f, P) \geq \delta} \Delta x_{k} \leq \delta \sum_{k: \omega_{k}(f, P) \geq \delta} \omega_{k}(f, P) \Delta x_{k}<\varepsilon \delta
$$

This implies that

$$
\sum_{k: \omega_{k}(f, P) \geq \delta} \Delta x_{k}<\varepsilon
$$

On the other hand, by the choice of δ, we see that $\omega_{k}(g \circ f, P)<\varepsilon$ whenever $\omega_{k}(f, P)<\delta$. Therefore, we can conclude that

$$
\sum_{k} \omega_{k}(g \circ f, P) \Delta x_{k}=\sum_{k: \omega_{k}(f, P)<\delta} \omega_{k}(g \circ f, P) \Delta x_{k}+\sum_{k: \omega_{k}(f, P) \geq \delta} \omega_{k}(g \circ f, P) \Delta x_{k}<\epsilon(b-a)+2 M \epsilon
$$

where $M:=\sup |f(x)|$. The proof is complete.

Remark 2.22. The composition of integrable functions need not be integrable. For example, if we put f is given as in Example 2.12 and $g(x)=x$ for $x=1 / n, n=1,2, \ldots$; otherwise $g(x)=0$. Then $f, g \in R[0,1]$ but $g \circ f \notin R[0,1]$.

Proposition 2.23. (Mean Value Theorem for Integrals)

Let f and g be the functions defined on $[a, b]$. Assume that f is continuous and g is a non-negative Riemann integrable function. Then, there is a point $\xi \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x \tag{2.7}
\end{equation*}
$$

In particular, there is a point ξ in (a, b) such that $f(\xi)=\frac{1}{b-a} \int_{a}^{b} f(x) d x$.
Proof. By the continuity of f on $[a, b]$, there exist two points x_{1} and x_{2} in $[a, b]$ such that

$$
f\left(x_{1}\right)=m:=\min f(x) ; \text { and } f\left(x_{2}\right)=M:=\max f(x)
$$

We may assume that $a \leq x_{1}<x_{2} \leq b$. From this, since $g \leq 0$, we have

$$
m g(x) \leq f(x) g(x) \leq M g(x)
$$

for all $x \in[a, b]$. From this and Proposition 2.19 above, we have

$$
m \int_{a}^{b} g \leq \int_{a}^{b} f g \leq M \int_{a}^{b} g
$$

So, if $\int_{a}^{b} g=0$, then the result follows at once.
We may now suppose that $\int_{a}^{b} g>0$. The above inequality shows that

$$
m=f\left(x_{1}\right) \leq \frac{\int_{a}^{b} f g}{\int_{a}^{b} g} \leq f\left(x_{2}\right)=M
$$

Therefore, there is a point $\xi \in\left[x_{1}, x_{2}\right] \subseteq[a, b]$ so that the Equation 2.7 holds by using the Intermediate Value Theorem for the function f. Thus, it remains to show that such element ξ can be chosen in (a, b).
Let $a \leq x_{1}<x_{2} \leq b$ be as above.
If x_{1} and x_{2} can be found so that $a<x_{1}<x_{2}<b$, then the result is proved immediately since $\xi \in\left[x_{1}, x_{2}\right] \subset(a, b)$ in this case.
Now suppose that x_{1} or x_{2} does not exist in (a, b), i.e., $m=f(a)<f(x)$ for all $x \in(a, b]$ or $f(x)<f(b)=M$ for all $x \in[a, b)$.
Claim 1: If $f(a)<f(x)$ for all $x \in(a, b]$, then $\int_{a}^{b} f g>f(a) \int_{a}^{b} g$ and hence, $\xi \in\left(a, x_{2}\right] \subseteq(a, b]$.
For showing Claim1, put $h(x):=f(x)-f(a)$ for $x \in[a, b]$. Then h is continuous on $[a, b]$ and $h>0$ on ($a, b]$. This implies that $\int_{c}^{d} h>0$ for any subinterval $[c, d] \subseteq[a, b]$. (Why?)
On the other hand, since $\int_{a}^{b} g=\int_{a}^{b} g>0$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ so that $L(g, P)>0$. This implies that $m_{k}(g, P)>0$ for some sub-interval $\left[x_{k-1}, x_{k}\right]$. Therefore, we have

$$
\int_{a}^{b} h g \geq \int_{x_{k-1}}^{x_{k}} h g \geq m_{k}(g, P) \int_{x_{k-1}}^{x_{k}} h>0
$$

Hence, we have $\int_{a}^{b} f g>f(a) \int_{a}^{b} g$. Claim 1 follows.
Similarly, one can show that if $f(x)<f(b)=M$ for all $x \in[a, b)$, then we have $\int_{a}^{b} f g<f(b) \int_{a}^{b} g$.
This, together with Claim 1 give us that such ξ can be found in (a, b). The proof is finished.

Example 2.24. We have $\lim _{n} \int_{0}^{\pi / 2} \sin ^{n} x d x=0$. To see this, for any $0<\varepsilon<\pi / 2$ and for each $n=1,2 \ldots$, the Mean value theorem gives a point $\xi_{n} \in\left(0, \frac{\pi}{2}-\varepsilon\right)$ such that

$$
\begin{aligned}
0<\int_{0}^{\pi / 2} \sin ^{n} x d x & =\left(\int_{0}^{\frac{\pi}{2}-\varepsilon}+\int_{\frac{\pi}{2}-\varepsilon}^{\pi / 2}\right) \sin ^{n} x d x \\
& \leq \sin ^{n-1} \xi_{n} \int_{0}^{\frac{\pi}{2}-\varepsilon} \sin x d x+\int_{\frac{\pi}{2}-\varepsilon}^{\pi / 2} \sin ^{n} x d x \\
& <\sin ^{n-1}\left(\frac{\pi}{2}-\varepsilon\right)+\varepsilon
\end{aligned}
$$

Taking $n \rightarrow \infty$, we have $\varlimsup_{n} \int_{0}^{\pi / 2} \sin ^{n} x d x=0$. The proof is finished.

Now if $f \in R[a, b]$, then by Proposition 2.18 , we can define a function $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(c)= \begin{cases}0 & \text { if } c=a \tag{2.8}\\ \int_{a}^{c} f & \text { if } a<c \leq b\end{cases}
$$

Theorem 2.25. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a, b]$, we have the following assertion.
(i) If there is a continuous function F on $[a, b]$ which is differentiable on (a, b) with $F^{\prime}=f$, then $\int_{a}^{b} f=F(b)-F(a)$. In this case, F is called an indefinite integral of f. (note: if F_{1} and F_{2} both are the indefinite integrals of f, then by the Mean Value Theorem, we have $F_{2}=F_{1}+$ constant $)$.
(ii) The function F defined as in Eq. 2.8 above is continuous on $[a, b]$. Furthermore, if f is continuous on $[a, b]$, then F^{\prime} exists on (a, b) and $F^{\prime}=f$ on (a, b).
Proof. For Part (i, notice that for any partition $P: a=x_{0}<\cdots<x_{n}=b$, then by the Mean Value Theorem, for each $\left[x_{i-1}, x_{i}\right]$, there is $\xi_{i} \in\left(x_{i-1}, x_{i}\right)$ such that $F\left(x_{i}\right)-F\left(x_{i-1}\right)=F^{\prime}\left(\xi_{i}\right) \Delta x_{i}=f\left(\xi_{i}\right) \Delta x_{i}$. So, we have

$$
L(f, P) \leq \sum f\left(\xi_{i}\right) \Delta x_{i}=\sum F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a) \leq U(f, P)
$$

for all partitions P on $[a, b]$. This gives

$$
\int_{a}^{b} f=\underline{\int_{a}^{b}} f \leq F(b)-F(a) \leq \overline{\int_{a}^{b}} f=\int_{a}^{b} f
$$

as desired.
For showing the continuity of F in Part (ii), let $a<c<x<b$. If $|f| \leq M$ on $[a, b]$, then we have $|F(x)-F(c)|=\left|\int_{c}^{x} f\right| \leq M(x-c)$. So, $\lim _{x \rightarrow c+} F(x)=F(c)$. Similarly, we also have $\lim _{x \rightarrow c-} F(x)=$ $F(c)$. Thus F is continuous on $[a, b]$.
Now assume that f is continuous on $[a, b]$. Notice that for any $t>0$ with $a<c<c+t<b$, we have

$$
\inf _{x \in[c, c+t]} f(x) \leq \frac{1}{t}(F(c+t)-F(c))=\frac{1}{t} \int_{c}^{c+t} f \leq \sup _{x \in[c, c+t]} f(x)
$$

Since f is continuous at c, we see that $\lim _{t \rightarrow 0+} \frac{1}{t}(F(c+t)-F(c))=f(c)$. Similarly, we have $\lim _{t \rightarrow 0-} \frac{1}{t}(F(c+$ $t)-F(c))=f(c)$. So, we have $F^{\prime}(c)=f(c)$ as desired. The proof is finished.

Definition 2.26. For each function f on $[a, b]$ and a partition $P: a=x_{0}<\cdots<x_{n}=b$, we call $R\left(f, P,\left\{\xi_{i}\right\}\right):=\sum_{i=1}^{N} f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$, the Riemann sum of f over $[a, b]$.
We say that the Riemann sum $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|P\| \rightarrow 0$, write $A=$ $\lim _{\|P\| \rightarrow 0} R\left(f, P,\left\{\xi_{i}\right\}\right)$, if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

whenever $\|P\|<\delta$ and for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Proposition 2.27. Let f be a function defined on $[a, b]$. If the limit $\lim _{\|P\| \rightarrow 0} R\left(f, P,\left\{\xi_{i}\right\}\right)=A$ exists, then f is automatically bounded.
Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a=x_{0}<$ $\cdots<x_{n}=b$ such that $\left|\sum_{k=1}^{n} f\left(\xi_{k}\right) \Delta x_{k}\right|<1+|A|$ for any $\xi_{k} \in\left[x_{k-1}, x_{k}\right]$. Since f is unbounded, we may assume that f is unbounded on $\left[a, x_{1}\right]$. In particular, we choose $\xi_{k}=x_{k}$ for $k=2, \ldots, n$. Also, we can choose $\xi_{1} \in\left[a, x_{1}\right]$ such that

$$
\left|f\left(\xi_{1}\right)\right| \Delta x_{1}<1+|A|+\left|\sum_{k=2}^{n} f\left(x_{k}\right) \Delta x_{k}\right| .
$$

It leads to a contradiction because we have $1+|A|>\left|f\left(\xi_{1}\right)\right| \Delta x_{1}-\left|\sum_{k=2}^{n} f\left(x_{k}\right) \Delta x_{k}\right|$. The proof is finished.

Lemma 2.28. $f \in R[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ whenever $\|P\|<\delta$.
Proof. The converse follows from Theorem 2.10.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $Q: a=y_{0}<\ldots<y_{l}=b$ on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $P: a=x_{0}<\ldots<x_{n}=b$ with $\|P\|<\delta$. Then we have

$$
U(f, P)-L(f, P)=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right]=\emptyset} \omega_{i}(f, P) \Delta x_{i} ;
$$

and

$$
I I=\sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \omega_{i}(f, P) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, Q)-L(f, Q)<\varepsilon
$$

and

$$
I I \leq(M-m) \sum_{i: Q \cap\left[x_{i-1}, x_{i}\right] \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot 2 l \cdot \frac{\varepsilon}{l}=2(M-m) \varepsilon .
$$

The proof is finished.

Theorem 2.29. $f \in R[a, b]$ if and only if the Riemann sum $R\left(f, P,\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|P\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, P) \leq R\left(f, P,\left\{\xi_{i}\right\}\right) \leq U(f, P)
$$

and

$$
L(f, P) \leq \int_{a}^{b} f(x) d x \leq U(f, P)
$$

for any partition P and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now let $\varepsilon>0$. Lemma 2.28 gives $\delta>0$ such that $U(f, P)-L(f, P)<\varepsilon$ as $\|P\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-R\left(f, P,\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$. The necessary part is proved and $R\left(f, P,\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition P with $\|P\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Note that f is automatically bounded in this case by Proposition 2.27.
Now fix a partition P with $\|P\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, P)-\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, P)-\varepsilon(b-a) \leq R\left(f, P,\left\{\xi_{i}\right\}\right)<A+\varepsilon .
$$

Thus, we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, P) \leq A+\varepsilon(1+b-a) \tag{2.9}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 2.9 will imply that for any $\varepsilon>0$, there is a partition P such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a) .
$$

The proof is complete.
Proposition 2.30. Let $f \in C[c, d]$. Let $\phi:[a, b] \longrightarrow[c, d]$ be a function with $\phi(a)=c$ and $\phi(b)=d$. Assume that ϕ is a C^{1} function over $[a, b]$, that is, ϕ^{\prime} can be extended to a continuous function on $[a, b]$. Then we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Notice that since f is continuous on $[c, d]$, the Fundamental Theorem of Calculus yields an indefinite integral F of f on $[c, d]$. Put $h(t):=F \circ \phi(t)$ for $t \in[a, b]$. Then by the chain rule, we see that $h^{\prime}(t)=F^{\prime}(\phi(t)) \cdot \phi^{\prime}(t)=f(\phi(t)) \cdot \phi^{\prime}(t)$ for $t \in(a, b)$. Using the Fundamental Theorem of Calculus again, we have

$$
\int_{a}^{b} f(\phi(t)) \cdot \phi^{\prime}(t) d t=\int_{a}^{b} h^{\prime}(t) d t=h(b)-h(a)=F(d)-F(c)=\int_{c}^{d} f(x) d x
$$

The proof is finished.

The following theorem shows us that the assumption of the continuity of f in Proposition 2.30 can be replaced by a weaker condition.

Theorem 2.31. (Change of variable formula): Let $f \in R[c, d]$. Let $\phi:[a, b] \longrightarrow[c, d]$ be a C^{1} function over $[a, b]$ with $\phi(a)=c$ and $\phi(b)=d$ satisfying $\phi^{\prime}>0$. Then $f \circ \phi \in R[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t .
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By using Theorem 2.29, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 2.28 and Theorem 2.29, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, P) \triangle x_{k}<\varepsilon \tag{2.11}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $P: c=x_{0}<\ldots<x_{m}=d$ with $\|P\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Note that there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\left|\phi^{\prime}(t)-\phi^{\prime}\left(t^{\prime}\right)\right|<\varepsilon$ for all $t, t^{\prime} \in[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $Q: a=t_{0}<\ldots<t_{m}=b$ with $\|Q\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $P: c=x_{0}<\ldots<x_{m}=d$ is a partition on $[c, d]$ with $\|P\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\Delta x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}
$$

Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \Delta t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \tag{2.12}\\
& +\left|\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 2.10 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon .
$$

On the other hand, we have

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}\right| \\
& \leq \sum \omega_{k}(f, P) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, P) \triangle x_{k} \\
& <\varepsilon
\end{aligned}
$$

Concerning about the last inequality in 2.12 , since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \Delta t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
Finally by inequality 2.12 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \varepsilon+\varepsilon+M(b-a) \varepsilon
$$

Finally, we have to show that $f \circ \phi \in R[a, b]$. To see this, we have shown that the function $f \circ \phi(t) \phi^{\prime}(t) \in$ $R[a, b]$ by above. Since $\phi^{\prime}>0$ is continuous on $[a, b], \frac{1}{\phi^{\prime}}$ is continuous on $[a, b]$ and thus $\frac{1}{\phi^{\prime}} \in R[a, b]$. This implies that the function $f \circ \phi=\frac{1}{\phi^{\prime}}\left(f \circ \phi \cdot \phi^{\prime}\right) \in R[a, b]$ as desired. The proof is complete.

Definition 2.32. Let $-\infty<a<b<\infty$.
(i) Let f be a function defined on $[a, \infty)$. Assume that the restriction $\left.f\right|_{[a, T]}$ is integrable over $[a, T]$ for all $T>a$. Put $\int_{a}^{\infty} f:=\lim _{T \rightarrow \infty} \int_{a}^{T} f$ if this limit exists.
Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.
(ii) If f is defined on $(a, b]$ and $\left.f\right|_{[c, b]} \in R[c, b]$ for all $a<c<b$. Put $\int_{a}^{b} f:=\lim _{c \rightarrow a+} \int_{c}^{b} f$ if it exists.
Similarly, we can define $\int_{a}^{b} f$ if f is defined on $[a, b)$.
(iii) As f is defined on \mathbb{R}, if $\int_{0}^{\infty} f$ and $\int_{-\infty}^{0} f$ both exist, then we put $\int_{-\infty}^{\infty} f=\int_{-\infty}^{0} f+\int_{0}^{\infty} f$.

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.

Clearly, the Cauchy criterion will imply the following immediately.
Proposition 2.33. Let $f:[a, \infty) \longrightarrow \mathbb{R}$ be a function given as in Definition 2.32.
(i) The improper integral $\int_{a}^{\infty} f$ exists if and only if for any $\varepsilon>0$, there is $M>0$ such that $\left|\int_{A}^{B} f\right|<\varepsilon$ whenever $M<A<B$.
(ii) Let g be a non-negative function defined on $[a, \infty)$ such that $|f| \leq g$ on $[a, \infty)$. If $\int_{a}^{\infty} g$ is convergent, then so is $\int_{a}^{\infty} f$.
(iii) Suppose that $0 \leq g \leq f$ on $[a, \infty)$. If $\int_{a}^{\infty} g$ is divergent, then so is $\int_{a}^{\infty} f$.

Similar assertion holds when f is defined on $(a, b]$.

Remark 2.34. By using the Cauchy Theorem, it is clear that if $\int_{a}^{\infty}|f|$ is convergent, then so is the integral $\int_{a}^{\infty} f$. However, the converse does not hold. It is quit different from the case when f defined on $[a, b]$.
For example, if $f(x)=\frac{(-1)^{n-1}}{n}$ as $n \in[n-1, n) n=1,2, \ldots$, then $\int_{a}^{\infty} f$ is convergent (it will be shown
in the last chapter) but $\int_{a}^{\infty}|f|$ is divergent.

Example 2.35. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.
Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$.
Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

3. Appendix: Lebesgue integrability theorem

Throughout this section, let f be a \mathbb{R}-valued function defined on $[a, b]$ and let $M:=\sup |f(x)|$.

Definition 3.1. A subset A of \mathbb{R} is said to have measure zero (or null set) if for every $\varepsilon>0$, there is a sequence of open intervals, $\left(a_{n}, b_{n}\right)$ such that $A \subseteq \bigcup\left(a_{n}, b_{n}\right)$ and $\sum\left(b_{n}-a_{n}\right)<\varepsilon$.

Clearly we have the following assertion.
Lemma 3.2. If $\left(A_{n}\right)$ is a sequence of null sets, then so is $\bigcup A_{n}$. Consequently, all countable sets are null sets.

From now on, we use the following notation in the rest of this section.
(1) For each subset A of \mathbb{R}, put $\omega(f, A):=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in A\right\}$.
(2) For $c \in[a, b]$, put $\omega(f, c):=\inf \{\omega(f, B(c, r)): r>0\}$, where $B(c, r):=(c-r, c+r)$.

The following is easy shown directly from the definition.

Lemma 3.3. The function f is continuous at $c \in[a, b]$ if and only if $\omega(f, c)=0$.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let $D:=\{c \in$ $[a, b]: f$ is discontinuous at $c\}$. Then $f \in R[a, b]$ if and only if D has measure zero.
Proof. For each positive integer n, let $D_{n}:=\left\{x \in[a, b]: \omega(f, x) \geq \frac{1}{n}\right\}$. Then we have $D=\bigcup_{n=1}^{\infty} D_{n}$. For (\Rightarrow), assume that $f \in R[a, b]$. Then by Lemma 3.2, it suffices to show that each D_{n} is a null set.

Fix a positive integer m such that $D_{m} \neq \emptyset$. Now Let $\varepsilon>0$. Since $f \in R[a, b]$, there is a partition $P: a=x_{0}<\cdots<x_{n}=b$ such that $\sum \omega_{k}(f, P) \Delta x_{k}<\frac{\varepsilon}{m}$. Notice that $c \in D_{m}$ if and only if $\omega(f, B(c, \delta)) \geq \frac{1}{m}$ for all $\delta>0$, where $B(c, \delta):=(c-\delta, c+\delta)$. Thus, if $\left(x_{k-1}, x_{k}\right) \cap D_{m} \neq \emptyset$, then $\omega_{k}(f, P) \geq \frac{1}{m}$. This implies that

$$
\begin{aligned}
\frac{\varepsilon}{m} & >\sum_{k=1}^{n} \omega_{k}(f, P) \Delta x_{k} \\
& \geq \sum_{k:\left(x_{k-1}, x_{k}\right) \cap D_{m} \neq \emptyset} \omega_{k}(f, P) \Delta x_{k} \\
& \geq \frac{1}{m} \sum_{k:\left(x_{k-1}, x_{k}\right) \cap D_{m} \neq \emptyset} \Delta x_{k}
\end{aligned}
$$

Therefore, we have $D_{m} \subseteq \bigcup_{k:\left(x_{k-1}, x_{k}\right) \cap D_{m} \neq \emptyset}\left[x_{k-1}, x_{k}\right]$ and

$$
\sum_{k:\left(x_{k-1}, x_{k}\right) \cap D_{m} \neq \emptyset} \Delta x_{k}<\varepsilon
$$

Thus, D_{m} is a null set for each positive integer m as desired.
Now for showing (\Leftarrow), assume that the set D of all discontinuous points of f is a null set.
We first claim that each D_{m} is a closed set. To see this, note that a point $c \in D_{m}$ if and only if $\omega(f, B(c, r)) \geq \frac{1}{m}$ for all $r>0$ if and only if for all $\eta>0$ and for all $r>0$, there are points $x^{\prime}, x^{\prime \prime} \in B(c, r)$ such that $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|>\frac{1}{m}-\eta$. Now let $\left(c_{n}\right)$ be a sequence in D_{m} converging to a point c. Let $r>0$ and $\eta>0$. Then there is c_{N} such that $\left|c_{N}-c\right|<\frac{r}{2}$. Since $c_{N} \in D_{m}$, there are $x^{\prime}, x^{\prime \prime} \in B\left(c_{N}, \frac{r}{2}\right)$ such that $\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|>\frac{1}{m}-\eta$. Since $x^{\prime}, x^{\prime \prime} \in B\left(c_{N}, \frac{r}{2}\right), x^{\prime}, x^{\prime \prime} \in B(c, r)$. Thus, $c \in D_{m}$ is as desired. This shows that D_{m} is a closed subset of $[a, b]$, and hence it is compact.
Let $\varepsilon>0$ and let m be a positive integer such that $1 / m<\varepsilon$. By the assumption $D=\bigcup_{l=1}^{\infty} D_{l}$ is a null set and so is the set D_{m}. Then there is a sequence of open intervals, say $\left\{\left(a_{j}, b_{j}\right)\right\}$, such that $D_{m} \subseteq \bigcup\left(a_{j}, b_{j}\right)$ and $\sum\left(b_{j}-a_{j}\right)<\varepsilon$. Since D_{m} is compact, there are finitely many $\left(a_{j}, b_{j}\right)$'s for $j=1, \ldots, K$ such that $D_{m} \subseteq \bigcup_{j=1}^{K}\left(a_{j}, b_{j}\right)$. Note that we may assume that the sequence $a_{1}<b_{1}<$ $a_{2}<b_{2}<\cdots<a_{K}<b_{K}$. Choose a partition $Q:=\left(\left\{a_{j}, b_{j}: j=1, \ldots, K\right\} \cup\{a, b\}\right) \cap[a, b]$ on $[a, b]$ and rewrite Q as $a=x_{0}<\cdots<x_{n}=b$.
Put $I:=\left\{j:\left[x_{j-1}, x_{j}\right] \cap D_{m}=\emptyset\right\}$ and $I I:=\left\{j:\left[x_{j-1}, x_{j}\right] \cap D_{m} \neq \emptyset\right\}$.
Note that if $j \in I$, then $\omega(f, x)<\frac{1}{m}$ for all $x \in\left[x_{j-1}, x_{j}\right]$. Hence, for each $x \in\left[x_{j-1}, x_{j}\right]$, there is $\delta_{x}>0$ such that $\omega\left(f, B\left(x, \delta_{x}\right)\right)<\frac{1}{m}$. Then by the compactness of $\left[x_{j-1}, x_{j}\right]$, there is a partition $P_{j}^{\prime}: x_{j-1}=x_{0}^{\prime}<\cdots<x_{l}^{\prime}=x_{j}$ on $\left[x_{j-1}, x_{j}\right]$ such that $\omega_{j^{\prime}}\left(f, P_{j}^{\prime}\right)<\frac{1}{m}$ for all $j^{\prime}=1, \ldots, l$. Thus, we have $\sum_{j^{\prime}} \omega_{j^{\prime}}\left(f, P_{j}^{\prime}\right) \Delta x_{j^{\prime}}<\frac{1}{m}\left(x_{j}-x_{j-1}\right)<\varepsilon\left(x_{j-1}-x_{j}\right)$ whenever $j \in I$.
On the other hand, if $j \in I I$, then $\left[x_{j-1}, x_{j}\right] \cap D_{m} \neq \emptyset$. Since $\sum_{j=1}^{K}\left(b_{j}-a_{j}\right)<\varepsilon$, we see that $\sum_{j \in I I} \omega j(f, Q) \Delta x_{j}<2 M \varepsilon$.
Now put $P:=Q \cup \bigcup_{j \in I} P_{j}^{\prime}: a=y_{0}<\cdots<y_{N}=b$. From the above argument, we have shown that $\sum_{i=1}^{N} \omega_{i}(f, P) \Delta y_{i}<\varepsilon(b-a)+2 M \varepsilon$. Thus $f \in R[a, b]$. The proof is complete.

4. Some results of sequences of functions

Proposition 4.1. Let $f_{n}:(a, b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:
(i) : $f_{n}(x)$ point-wise converges to a function $f(x)$ on (a, b);
(ii) : each f_{n} is a C^{1} function on (a, b);
(iii) : $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b).

Then f is a C^{1}-function on (a, b) with $f^{\prime}=g$.
Proof. Fix $c \in(a, b)$. Then for each x with $c<x<b$ (similarly, we can prove it in the same way as $a<x<c$), the Fundamental Theorem of Calculus implies that

$$
f_{n}(x)=\int_{c}^{x} f_{n}^{\prime}(t) d t+f_{n}(c)
$$

Since $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b), we see that

$$
\int_{c}^{x} f_{n}^{\prime}(t) d t \longrightarrow \int_{c}^{x} g(t) d t
$$

This gives

$$
\begin{equation*}
f(x)=\int_{c}^{x} g(t) d t+f(c) \tag{4.1}
\end{equation*}
$$

for all $x \in(c, b)$. Similarly, we have $f(x)=\int_{c}^{x} g(t) d t+f(c)$ for all $x \in(a, b)$.
On the other hand, g is continuous on (a, b) since each f_{n}^{\prime} is continuous and $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b). Equation 4.1 will tell us that f^{\prime} exists and $f^{\prime}=g$ on (a, b). The proof is finished.

Proposition 4.2. Let $\left(f_{n}\right)$ be a sequence of differentiable functions defined on (a, b). Assume that
(i): there is a point $c \in(a, b)$ such that $\lim f_{n}(c)$ exists;
(ii): f_{n}^{\prime} converges uniformly to a function g on (a, b).

Then
(a): f_{n} converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and $f^{\prime}=g$.

Proof. For Part (a), we will make use the Cauchy theorem.
Let $\varepsilon>0$. Then by the assumptions (i) and (ii), there is a positive integer N such that

$$
\left|f_{m}(c)-f_{n}(c)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon
$$

for all $m, n \geq N$ and for all $x \in(a, b)$. Now fix $c<x<b$ and $m, n \geq N$. To apply the Mean Value Theorem for $f_{m}-f_{n}$ on (c, x), then there is a point ξ between c and x such that

$$
\begin{equation*}
f_{m}(x)-f_{n}(x)=f_{m}(c)-f_{n}(c)+\left(f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right)(x-c) \tag{4.2}
\end{equation*}
$$

This implies that

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(c)-f_{n}(c)\right|+\left|f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right||x-c|<\varepsilon+(b-a) \varepsilon
$$

for all $m, n \geq N$ and for all $x \in(c, b)$. Similarly, when $x \in(a, c)$, we also have

$$
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon+(b-a) \varepsilon
$$

So Part (a) follows.
Let f be the uniform limit of $\left(f_{n}\right)$ on (a, b)
For Part (b), we fix $u \in(a, b)$. We are going to show

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u) .
$$

Let $\varepsilon>0$. Since $\left(f_{n}^{\prime}\right)$ is uniformly convergent on (a, b), there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon \tag{4.3}
\end{equation*}
$$

for all $m, n \geq N$ and for all $x \in(a, b)$
Note that for all $m \geq N$ and $x \in(a, b) \backslash\{u\}$, applying the Mean value Theorem for $f_{m}-f_{N}$ as before, we have

$$
\frac{f_{m}(x)-f_{N}(x)}{x-u}=\frac{f_{m}(u)-f_{N}(u)}{x-u}+\left(f_{m}^{\prime}(\xi)-f_{N}^{\prime}(\xi)\right)
$$

for some ξ between u and x.
So Eq.4.3 implies that

$$
\begin{equation*}
\left|\frac{f_{m}(x)-f_{m}(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon \tag{4.4}
\end{equation*}
$$

for all $m \geq N$ and for all $x \in(a, b)$ with $x \neq u$.
Taking $m \rightarrow \infty$ in Eq.4.4, we have

$$
\left|\frac{f(x)-f(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon
$$

Hence we have

$$
\begin{aligned}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| & \leq\left|\frac{f(x)-f(u)}{x-c}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right|+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right| \\
& \leq \varepsilon+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|
\end{aligned}
$$

So if we can take $0<\delta$ such that $\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|<\varepsilon$ for $0<|x-u|<\delta$, then we have

$$
\begin{equation*}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| \leq 2 \varepsilon \tag{4.5}
\end{equation*}
$$

for $0<|x-u|<\delta$. On the other hand, by the choice of N, we have $\left|f_{m}^{\prime}(y)-f_{N}^{\prime}(y)\right|<\varepsilon$ for all $y \in(a, b)$ and $m \geq N$. So we have $\left|g(u)-f_{N}^{\prime}(u)\right| \leq \varepsilon$. This together with Eq.4.5 give

$$
\left|\frac{f(x)-f(u)}{x-u}-g(u)\right| \leq 3 \varepsilon
$$

as $0<|x-u|<\delta$, that is we have

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

The proof is finished.

Remark 4.3. The uniform convergence assumption of $\left(f_{n}^{\prime}\right)$ in the Propositions above is essential.
Example 4.4. Let $f_{n}(x):=\frac{x}{1+n^{2} x^{2}}$ for $x \in(-1,1)$. Then we have

$$
g(x):=\lim _{n} f_{n}^{\prime}(x):=\lim _{n} \frac{1-n^{2} x^{2}}{\left(1+n^{2} x^{2}\right)^{2}}= \begin{cases}0 & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

On the other hand, $f_{n} \rightarrow 0$ uniformly on $(-1,1)$. In fact, if $f_{n}^{\prime}(1 / n)=0$ for all $n=1,2, .$. , then f_{n} attains the maximal value $f_{n}(1 / n)=\frac{1}{2 n}$ at $x=1 / n$ for each $n=1, \ldots$ and hence, $f_{n} \rightarrow 0$ uniformly on $(-1,1)$.
So Propositions 4.1 and 4.2 does not hold. Note that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g on $(-1,1)$.

Proposition 4.5. (Dini's Theorem): Let A be a compact subset of \mathbb{R} and $f_{n}: A \rightarrow \mathbb{R}$ be a sequence of continuous functions defined on A. Suppose that
(i) for each $x \in A$, we have $f_{n}(x) \leq f_{n+1}(x)$ for all $n=1,2 \ldots$;
(ii) the pointwise limit $f(x):=\lim _{n} f_{n}(x)$ exists for all $x \in A$;
(iii) f is continuous on A.

Then f_{n} converges to f uniformly on A.
Proof. Let $g_{n}:=f-f_{n}$ defined on A. Then each g_{n} is continuous and $g_{n}(x) \downarrow 0$ pointwise on A. It suffices to show that g_{n} converges to 0 uniformly on A.
Method I: Suppose not. Then there is $\varepsilon>0$ such that for all positive integer N, we have

$$
\begin{equation*}
g_{n}\left(x_{n}\right) \geq \varepsilon \tag{4.6}
\end{equation*}
$$

for some $n \geq N$ and some $x_{n} \in A$. From this, by passing to a subsequence we may assume that $g_{n}\left(x_{n}\right) \geq \varepsilon$ for all $n=1,2, \ldots$. Then by using the compactness of A, there is a convergent subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ in A. Let $z:=\lim _{k} x_{n_{k}} \in A$. Since $g_{n_{k}}(z) \downarrow 0$ as $k \rightarrow \infty$. So, there is a positive integer K such that $0 \leq g_{n_{K}}(z)<\varepsilon / 2$. Since $g_{n_{K}}$ is continuous at z and $\lim _{i} x_{n_{i}}=z$, we have $\lim _{i} g_{n_{K}}\left(x_{n_{i}}\right)=g_{n_{K}}(z)$. So, we can choose i large enough such that $i>K$

$$
g_{n_{i}}\left(x_{n_{i}}\right) \leq g_{n_{K}}\left(x_{n_{i}}\right)<\varepsilon / 2
$$

because $g_{m}\left(x_{n_{i}}\right) \downarrow 0$ as $m \rightarrow \infty$. This contradicts to the Inequality 4.6.
Method II: Let $\varepsilon>0$. Fix $x \in A$. Since $g_{n}(x) \downarrow 0$, there is $N(x) \in \mathbb{N}$ such that $0 \leq g_{n}(x)<\varepsilon$ for all $n \geq N(x)$. Since $g_{N(x)}$ is continuous, there is $\delta(x)>0$ such that $g_{N(x)}(y)<\varepsilon$ for all $y \in A$ with $|x-y|<\delta(x)$. If we put $J_{x}:=(x-\delta(x), x+\delta(x))$, then $A \subseteq \bigcup_{x \in A} J_{x}$. Then by the compactness of A, there are finitely many x_{1}, \ldots, x_{m} in A such that $A \subseteq J_{x_{1}} \cup \cdots \cup J_{x_{m}}$. Put $N:=\max \left(N\left(x_{1}\right), \ldots, N\left(x_{m}\right)\right)$. Now if $y \in A$, then $y \in J\left(x_{i}\right)$ for some $1 \leq i \leq m$. This implies that

$$
g_{n}(y) \leq g_{N\left(x_{i}\right)}(y)<\varepsilon
$$

for all $n \geq N \geq N\left(x_{i}\right)$.

5. Absolutely convergent series

Throughout this section, let $\left(a_{n}\right)$ be a sequence of complex numbers.
Definition 5.1. We say that a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.
Also a convergent series $\sum_{n=1}^{\infty} a_{n}$ is said to be conditionally convergent if it is not absolute convergent.
Example 5.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0<\alpha \leq 1$.
This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.
For instance, if we consider the function $f:[1, \infty) \longrightarrow \mathbb{R}$ given by

$$
f(x)=\frac{(-1)^{n+1}}{n^{\alpha}} \quad \text { if } \quad n \leq x<n+1
$$

If $\alpha=1 / 2$, then $\int_{1}^{\infty} f(x) d x$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 5.3. Let $\sigma:\{1,2 \ldots\} \rightarrow\{1,2 \ldots$.$\} be a bijection. A formal series \sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_{n}$.

Example 5.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.
We first notice that the series $\sum_{i} \frac{1}{2 i-1}$ diverges to infinity. Thus for each $M>0$, there is a positive integer N such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 i-1} \geq M \tag{*}
\end{equation*}
$$

for all $n \geq N$. Then there is $N_{1} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}>1
$$

By using (*) again, there is a positive integer N_{2} with $N_{1}<N_{2}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}>2
$$

To repeat the same procedure, we can find a positive integers subsequence $\left(N_{k}\right)$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}+\cdots \cdots \cdots-\sum_{N_{k-1}<i \leq N_{k}} \frac{1}{2 i-1}-\frac{1}{2 k}>k
$$

for all positive integers k. So if we let $a_{n}=\frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.
Theorem 5.5. Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series. Then for any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is also absolutely convergent. Moreover, we have $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{\sigma(n)}$.
Proof. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots\}$ be a bijection as before.
We first claim that $\sum_{n} a_{\sigma(n)}$ is also absolutely convergent.
Let $\varepsilon>0$. Since $\sum_{n}\left|a_{n}\right|<\infty$, there is a positive integer N such that

$$
\begin{equation*}
\left|a_{N+1}\right|+\cdots \cdots \cdots+\left|a_{N+p}\right|<\varepsilon \tag{*}
\end{equation*}
$$

for all $p=1,2 \ldots$. Notice that since σ is a bijection, we can find a positive integer M such that $M>\max \{j: 1 \leq \sigma(j) \leq N\}$. Then $\sigma(i) \geq N$ if $i \geq M$. This together with $(*)$ imply that if $i \geq M$ and $p \in \mathbb{N}$, we have

$$
\left|a_{\sigma(i+1)}\right|+\cdots \cdots \cdots \cdot\left|a_{\sigma(i+p)}\right|<\varepsilon
$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria.
Finally we claim that $\sum_{n} a_{n}=\sum_{n} a_{\sigma(n)}$. Put $l=\sum_{n} a_{n}$ and $l^{\prime}=\sum_{n} a_{\sigma(n)}$. Now let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that

$$
\left|l-\sum_{n=1}^{N} a_{n}\right|<\varepsilon \quad \text { and } \quad\left|a_{N+1}\right|+\cdots \cdots+\left|a_{N+p}\right|<\varepsilon \cdots \cdots \cdots(* *)
$$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$ and $\left|l^{\prime}-\sum_{i=1}^{M} a_{\sigma(i)}\right|<\varepsilon$. Notice that since we have $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$, the condition $(* *)$ gives

$$
\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right| \leq \sum_{N<i<\infty}\left|a_{i}\right| \leq \varepsilon
$$

We can now conclude that

$$
\left|l-l^{\prime}\right| \leq\left|l-\sum_{n=1}^{N} a_{n}\right|+\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right|+\left|\sum_{i=1}^{M} a_{\sigma(i)}-l^{\prime}\right| \leq 3 \varepsilon .
$$

The proof is complete.

In view of Theorem 5.5, it is naturally to introduce the following definition.
Definition 5.6. A series $\sum x_{n}$ is said to be unconditionally convergent if whenever π is a bijection on \mathbb{Z}_{+}the series $\sum_{n} x_{\pi(n)}$ is convergent.

Theorem 5.7. Let $\sum_{n} x_{n}$ be a series of numbers. Then the following are equivalent.
(i) $\sum_{n} x_{n}$ is unconditionally convergent.
(ii) For any subsequence of positive integers $n_{1}<n_{2}<\cdots$, the series $\sum_{k} x_{n_{k}}$ is convergent.
(iii) For any choice of sign sequence (ε_{n}), that is $\varepsilon_{n}= \pm 1$, the series $\sum_{n} \varepsilon_{n} x_{n}$ is convergent.
(iv) For any $\varepsilon>0$, there is a positive integer N such that $\left|\sum_{i \in A} x_{i}\right|<\varepsilon$ whenever A is a finite subset of \mathbb{Z}_{+}with $N<\min A$.

Proof. The route of the proof is as the following.

$$
(i) \Rightarrow(i v) \Rightarrow(i i) \Rightarrow(i v) \Rightarrow(i) ; \quad \text { and }(i i) \Leftrightarrow(i i i) .
$$

Part $(i i) \Leftrightarrow(i i i)$ is clear.
For showing $(i) \Rightarrow(i v)$. Assume that (iv) does not hold. Hence, there is $\varepsilon>0$ and there is a sequence of finite subsets $\left(A_{n}\right)$ of \mathbb{Z}_{+}such that $\max A_{n}<\min A_{n+1}$ and $\left|\sum_{i \in A_{n}} x_{i}\right| \geq \varepsilon$ for all n. From this we see that $A_{n} \cap A_{m}=\emptyset$ for all $m \neq n$ and there is a bijection $\pi: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$such that each $A_{n}=\left\{\pi\left(i_{n}\right)<\pi\left(i_{n}+1\right)<\cdots<\pi\left(i_{n}+p_{n}\right)\right\}$ for some positive integers i_{n} and p_{n}. Then by the construction of A_{n}, the series $\sum_{n} x_{\pi(n)}$ is divergent, hence (i) does not hold.
For showing $(i v) \Rightarrow(i i)$, let $\sum_{k} x_{n_{k}}$ be any subseries of $\sum_{n} x_{n}$. Let $\varepsilon>0$. Then by the assumption of (iv), there is a positive integer N such that $\left|\sum_{i \in A} x_{i}\right|<\varepsilon$ whenever A is a finite subset of \mathbb{Z}_{+}with $\min A>N$. Choose K such that $n_{k}>N$ for all $k \geq K$. This implies that $\left|x_{n_{k+1}}+\cdots+x_{n_{k+p}}\right|<\varepsilon$ for all $k>K$ and for all $p=1,2, \ldots$, so the series $\sum_{k} x_{n_{k}}$ is convergent.
For $(i i) \Rightarrow(i v)$, assume that $(i v)$ does not hold. As in the proof of $(i) \Rightarrow(i v)$, there is $\varepsilon>0$ and there is a subsequence $\left(x_{n_{i}}\right)$ such that $\left|\sum_{n_{i} \in A_{k}} x_{n_{i}}\right| \geq \varepsilon$, thus, the subseries $\sum_{i} x_{n_{i}}$ is divergent.
For $(i v) \Rightarrow(i)$, let π be any bijection on \mathbb{Z}_{+}. Let $\varepsilon>0$ and let N be given as in (iv). Take i_{0} such that $\pi(i)>N$ for all $i \geq i_{0}$. This implies that $\left|\sum_{i_{1} \leq i \leq i_{2}} x_{\pi(i)}\right|<\varepsilon$ for all $i_{0} \leq i_{1}<i_{2}$. Thus, (i) holds. The proof is finished.

Remark 5.8. Notice that from the proof of Theorem 5.9, we see that the Theorem does still hold if the series $\sum x_{n}$ is taken in \mathbb{R}^{N}.

Corollary 5.9. Let $\left(x_{n}\right)$ be a sequence of real numbers. Then $\sum_{n} x_{n}$ is absolutely convergent if and only if it is unconditionally convergent.

Proof. Part (\Rightarrow) has been shown in Theorem 5.5.
For (\Leftarrow), assume that $\sum_{n} x_{n}$ is unconditionally convergent. For each n, let $\varepsilon_{n}:= \pm 1$ such that $\left|x_{n}\right|=\varepsilon_{n} x_{n}$. Then by Theorem $5.9(i) \Leftrightarrow(i i i)$, the series $\sum\left|x_{n}\right|=\sum \varepsilon_{n} x_{n}$ is convergent as desired. The proof is finished.

6. Power series

Throughout this section, let

$$
\begin{equation*}
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \tag{*}
\end{equation*}
$$

denote a formal power series, where $a_{i} \in \mathbb{R}$.
Lemma 6.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that $f(c)$ is convergent. Then
(i) : $f(x)$ is absolutely convergent for all x with $|x|<|c|$.
(ii) : f converges uniformly on $[-\eta, \eta]$ for any $0<\eta<|c|$.

Proof. For Part (i), note that since $f(c)$ is convergent, then $\lim a_{n} c^{n}=0$. So there is a positive integer N such that $\left|a_{n} c^{n}\right| \leq 1$ for all $n \geq N$. Now if we fix $|x|<|c|$, then $|x / c|<1$. Therefore, we have

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|\left|x^{n}\right| \leq \sum_{n=1}^{N-1}\left|a_{n}\left\|x^{n}\left|+\sum_{n \geq N}\right| a_{n} c^{n}\right\|\right| x /\left.c\right|^{n} \leq \sum_{n=1}^{N-1}\left|a_{n}\right|\left|x^{n}\right|+\sum_{n \geq N}|x / c|^{n}<\infty
$$

So Part (i) follows.
Now for Part (ii), if we fix $0<\eta<|c|$, then $\left|a_{n} x^{n}\right| \leq\left|a_{n} \eta\right|^{n}$ for all n and for all $x \in[-\eta, \eta]$. On the other hand, we have $\sum_{n}\left|a_{n} \eta^{n}\right|<\infty$ by Part (i). So f converges uniformly on $[-\eta, \eta$] by the M-test. The proof is finished.

Remark 6.2. In Lemma 6.9(ii), notice that if $f(c)$ is convergent, it does not imply f converges uniformly on $[-c, c]$ in general.
For example, $f(x):=1+\sum_{n=1}^{\infty} \frac{x^{n}}{n}$. Then $f(-1)$ is convergent but $f(1)$ is divergent.
Definition 6.3. Call the set dom $f:=\{x \in \mathbb{R}: f(c)$ is convergent $\}$ the domain of convergence of f for convenience. Let $0 \leq r:=\sup \{|c|: c \in \operatorname{dom} f\} \leq \infty$. Then r is called the radius of convergence of f.
Remark 6.4. Notice that by Lemma 6.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0<r<\infty$.
When $r=0$, then $\operatorname{dom} f=\{0\}$.
Finally, if $r=\infty$, then $\operatorname{dom} f=\mathbb{R}$.
Example 6.5. If $f(x)=\sum_{n=0}^{\infty} n!x^{n}$, then $r=(0)$. In fact, notice that if we fix a non-zero number x and consider $\lim _{n}\left|(n+1)!x^{n+1}\right| /\left|n!x^{n}\right|=\infty$, then by the ratio test $f(x)$ must be divergent for any $x \neq 0$. So $r=0$ and $\operatorname{dom} f=(0)$.

Example 6.6. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n^{n}$. Notice that we have $\lim _{n}\left|x^{n} / n^{n}\right|^{1 / n}=0$ for all x. So the root test implies that $f(x)$ is convergent for all x and then $r=\infty$ and $\operatorname{dom} f=\mathbb{R}$.

Example 6.7. Let $f(x)=1+\sum_{n=1}^{\infty} x^{n} / n$. Then $\lim _{n}\left|x^{n+1} /(n+1)\right| \cdot\left|n / x^{n}\right|=|x|$ for all $x \neq 0$. So by the ration test, we see that if $|x|<1$, then $f(x)$ is convergent and if $|x|>1$, then $f(x)$ is divergent. So $r=1$. Also, it is known that $f(1)$ is divergent but $f(-1)$ is divergent. Therefore, we have dom $f=[-1,1)$.

Example 6.8. Let $f(x)=\sum x^{n} / n^{2}$. Then by using the same argument of Example 6.7, we have $r=1$. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom $f=[-1,1]$.

Lemma 6.9. With the notation as above, if $r>0$, then f converges uniformly on $(-\eta, \eta)$ for any $0<\eta<r$.
Proof. It follows from Lemma 6.1 at once.

Remark 6.10. Note that the Example 6.7 shows us that f may not converge uniformly on $(-r, r)$. In fact let f be defined as in Example 6.7. Then f does not converges on $(-1,1)$. In fact, if we let $s_{n}(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$, then for any positive integer n and $0<x<1$, we have

$$
\left|s_{2 n}(x)-s_{n}(x)\right|=\frac{x^{n+1}}{n+1}+\cdots \cdots+\frac{x^{n}}{2 n} .
$$

From this we see that if n is fixed, then $\left|s_{2 n}(x)-s_{n}(x)\right| \rightarrow 1 / 2$ as $x \rightarrow 1-$. So for each n, we can find $0<x<1$ such that $\left|s_{2 n}(x)-s_{n}(x)\right|>\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$. Thus f does not converges uniformly on $(-1,1)$ by the Cauchy Theorem.

Proposition 6.11. With the notation as above, let $\ell=\varlimsup\left|a_{n}\right|^{1 / n}$ or $\lim \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}$ provided it exists. Then

$$
r= \begin{cases}\frac{1}{\ell} & \text { if } 0<\ell<\infty ; \\ 0 & \text { if } \ell=\infty ; \\ \infty & \text { if } \ell=0 .\end{cases}
$$

Proposition 6.12. With the notation as above if $0<r \leq \infty$, then $f \in C^{\infty}(-r, r)$. Moreover, the k-derivatives $f^{(k)}(x)=\sum_{n \geq k} a_{k} n(n-1)(n-2) \cdots \cdots(n-k+1) x^{n-k}$ for all $x \in(-r, r)$.
Proof. Fix $c \in(-r, r)$. By Lemma 6.9, one can choose $0<\eta<r$ such that $c \in(-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.
It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case $k=1$ first.
If we consider the series $\sum_{n=0}^{\infty}\left(a_{n} x^{n}\right)^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$, then it also has the same radius r because $\lim _{n}\left|n a_{n}\right|^{1 / n}=\lim _{n}\left|a_{n}\right|^{1 / n}$. This implies that the series $\sum_{n=1}^{\infty} n a_{n} x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f \mid(-\eta, \eta)$ is differentiable. In particular, $f^{\prime}(c)$ exists and $f^{\prime}(c)=\sum_{n=1}^{\infty} n a_{n} c^{n-1}$.
So the result can be shown inductively on k.

Proposition 6.13. With the notation as above, suppose that $r>0$. Then we have

$$
\int_{0}^{x} f(t) d t=\sum_{n=0}^{\infty} \int_{0}^{x} a_{n} t^{n} d t=\sum_{0}^{\infty} \frac{1}{n+1} a_{n} x^{n+1}
$$

for all $x \in(-r, r)$.

Proof. Fix $0<x<r$. Then by Lemma $6.9 f$ converges uniformly on $[0, x]$. Since each term $a_{n} t^{n}$ is continuous, the result follows.

Theorem 6.14. (Abel) : With the notation as above, suppose that $0<r$ and $f(r)(o r f(-r))$ exists. Then f is continuous at $x=r($ resp. $x=-r)$, that is $\lim _{x \rightarrow r-} f(x)=f(r)$.

Proof. Note that by considering $f(-x)$, it suffices to show that the case $x=r$ holds. Assume $r=1$.
Notice that if f converges uniformly on $[0,1]$, then f is continuous at $x=1$ as desired.
Let $\varepsilon>0$. Since $f(1)$ is convergent, then there is a positive integer such that

$$
\left|a_{n+1}+\cdots \cdots \cdots+a_{n+p}\right|<\varepsilon
$$

for $n \geq N$ and for all $p=1,2 \ldots$ Note that for $n \geq N ; p=1,2 \ldots$ and $x \in[0,1]$, we have

$$
\begin{align*}
s_{n+p}(x)-s_{n}(x) & =a_{n+1} x^{n+1}+a_{n+2} x^{n+1}+a_{n+3} x^{n+1}+\cdots \cdots \cdots+a_{n+p} x^{n+1} \\
& +a_{n+2}\left(x^{n+2}-x^{n+1}\right)+a_{n+3}\left(x^{n+2}-x^{n+1}\right)+\cdots \cdots \cdots \cdots+a_{n+p}\left(x^{n+2}-x^{n+1}\right) \\
& +a_{n+3}\left(x^{n+3}-x^{n+2}\right)+\cdots \cdots \cdots+a_{n+p}\left(x^{n+3}-x^{n+2}\right) \tag{6.1}\\
& \vdots \\
& +a_{n+p}\left(x^{n+p}-x^{n+p-1}\right)
\end{align*}
$$

Since $x \in[0,1],\left|x^{n+k+1}-x^{n+k}\right|=x^{n+k}-x^{n+k+1}$. So the Eq.6.1 implies that
$\left|s_{n+p}(x)-s_{n}(x)\right| \leq \varepsilon\left(x_{n+1}+\left(x^{n+1}-x^{n+2}\right)+\left(x^{n+2}-x^{n+3}\right)+\cdots+\left(x^{n+p-1}-x^{n+p}\right)\right)=\varepsilon\left(2 x^{n+1}-x^{n+p}\right) \leq 2 \varepsilon$.
So f converges uniformly on $[0,1]$ as desired.
Finally for the general case, we consider $g(x):=f(r x)=\sum_{n} a_{n} r^{n} x^{n}$. Note that $\lim _{n}\left|a_{n} r^{n}\right|^{1 / n}=1$ and $g(1)=f(r)$. Then by the case above,, we have shown that

$$
f(r)=g(1)=\lim _{x \rightarrow 1-} g(x)=\lim _{x \rightarrow r-} f(x)
$$

The proof is finished.
Remark 6.15. In Remark 6.10, we have seen that f may not converges uniformly on $(-r, r)$. However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on $[-r, r]$ in this case.

7. REAL ANALYTIC FUNCTIONS

Proposition 7.1. Let $f \in C^{\infty}(a, b)$ and $c \in(a, b)$. Then for any $x \in(a, b) \backslash\{c\}$ and for any $n \in \mathbb{N}$, there is $\xi=\xi(x, n)$ between c and x such that

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

Call $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$ (may not be convergent) the Taylor series of f at c.
Proof. It is easy to prove by induction on n and the integration by part.

Definition 7.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in(a, b)$, one can find $\delta>0$ and a power series $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ such that

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k} \tag{*}
\end{equation*}
$$

for all $x \in(c-\delta, c+\delta) \subseteq(a, b)$.

Remark 7.3.

(i) : Concerning about the definition of a real analytic function f, the expression (*) above is uniquely determined by f, that is, each coefficient a_{k} 's is uniquely determined by f. In fact, by Proposition 6.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$
\begin{equation*}
a_{k}=\frac{f^{(k)}(c)}{k!} \tag{**}
\end{equation*}
$$

for all $k=0,1,2, \ldots$
(ii) : Although every real analytic function is C^{∞}, the following example shows that the converse does not hold.
Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0)=0$ for all $k=0,1,2 \ldots$ So if f is real analytic, then there is $\delta>0$ such that $a_{k}=0$ for all k by the Eq. $(* *)$ above and hence $f(x) \equiv 0$ for all $x \in(-\delta, \delta)$. It is absurd.
(iii) Interesting Fact : Let D be an open disc in \mathbb{C}. A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞}.

Lemma 7.4. Let $\left(a_{j k}\right)_{j, k \in \mathbb{N}}$ be a set of real numbers. Assume that $\sum_{k=0}^{\infty} \sum_{j=0}^{k}\left|a_{j k}\right|<\infty$. Then $L:=$ $\sum_{k=0}^{\infty} \sum_{j=0}^{k} a_{j k}$ exists and $L=\sum_{j=0}^{\infty} \sum_{j \geq k} a_{j k}$.
Proof. Note that $L:=\sum_{k=0}^{\infty} \sum_{j=0}^{k} a_{j k}$ exists due to the Cauchy theorem. Put $b_{k}:=\sum_{j=0}^{k}\left|a_{j k}\right|$. Then for any $\varepsilon>0$, there is $K_{1} \in \mathbb{N}$ such that

$$
\left|L-\sum_{k=0}^{K} \sum_{j=0}^{k} a_{j k}\right|<\varepsilon \text { for all } \quad K>K_{1} ; \quad \text { and } \quad \sum_{k>K_{1}} \sum_{j=0}^{k}\left|a_{j k}\right|<\varepsilon
$$

Let $J_{1}=K_{1}$. Then for $J>J_{1}$, we have

$$
\begin{aligned}
\left|L-\sum_{j=0}^{J} \sum_{k \geq j} a_{j k}\right| & \leq\left|L-\sum_{j=0}^{J_{1}} \sum_{k \geq j} a_{j k}\right|+\left|\sum_{J_{1}<j \leq J} \sum_{k \geq j} a_{j k}\right| \\
& \leq\left|L-\sum_{0 \leq j \leq J_{1}} \sum_{j \leq k \leq K_{1}} a_{j k}\right|+\left|\sum_{0 \leq j \leq J_{1}} \sum_{k>K_{1}} a_{j k}\right|+\left|\sum_{J_{1}<j \leq J} \sum_{k \geq j} a_{j k}\right| \\
& <3 \varepsilon
\end{aligned}
$$

Proposition 7.5. Suppose that $f(x):=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ is convergent on some open interval I centered at c, that is $I=(c-r, c+r)$ for some $r>0$. Then f is analytic on I.

Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation $x-c$, we may assume that $c=0$ and hence, $I=(-r, r)$. Now fix $z \in I$ and choose $\delta>0$ such that $(z-\delta, z+\delta) \subseteq I$. We are going to show that

$$
f(x)=\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
$$

for all $x \in(z-\delta, z+\delta)$.
Notice that $|z|+|x-z| \in I$ for all $x \in(z-\delta, z+\delta)$ and thus, $\sum_{k=0}^{\infty}\left|a_{k}\right|(|z|+|x-z|)^{k}<\infty$. Lemma 7.4 implies that

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} a_{k}(x-z+z)^{k} \\
& =\sum_{k=0}^{\infty} a_{k} \sum_{j=0}^{k} \frac{k(k-1) \cdots \cdots(k-j+1)}{j!}(x-z)^{j} z^{k-j} \\
& =\sum_{j=0}^{\infty}\left(\sum_{k \geq j} k(k-1) \cdots \cdots(k-j+1) a_{k} z^{k-j}\right) \frac{(x-z)^{j}}{j!} \\
& =\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!}(x-z)^{j}
\end{aligned}
$$

for all $x \in(z-\delta, z+\delta)$. The proof is finished.

Example 7.6. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln (1+x)}$ for $x>-1$.
Now for each $k \in \mathbb{N}$, put

$$
\binom{\alpha}{k}= \begin{cases}\frac{\alpha(\alpha-1) \cdots \cdots \cdot(\alpha-k+1)}{k!} & \text { if } k \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

Then

$$
(1+x)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

whenever $|x|<1$.
Consequently, $(1+x)^{\alpha}$ is analytic on $(-1,1)$.

Proof. Considering the formal power series

$$
F(x):=\sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}
$$

The ratio test implies that the radius of the series $F(x)$ is $r=1$. Hence, the series $F(x)$ is convergent in $(-1,1)$. In particular, $F(x)$ is analytic on $(-1,1)$ by Proposition 7.5 . We are going to show that $F(x)=(1+x)^{\alpha}$ for all $x \in(-1,1)$. Notice that we have the following equation.

$$
\begin{equation*}
(1+x) F^{\prime}(x)=\alpha F(x) \quad \text { for all } x \in(-1,1) \tag{7.1}
\end{equation*}
$$

To see this note that we have

$$
F^{\prime}(x)=\sum_{n=1}^{\infty} n\binom{\alpha}{n} x^{n-1}=\sum_{j=0}^{\infty}(j+1)\binom{\alpha}{j+1} x^{j} .
$$

This is obtained by the following direct calculation.

$$
\begin{aligned}
&(1+x) F^{\prime}(x)=\sum_{j=0}^{\infty}(j+1)\binom{\alpha}{j+1} x^{j}+\sum_{n=1}^{\infty} n\binom{\alpha}{n} x^{n} \\
& \alpha+\sum_{j=1}^{\infty}\left\{(j+1)\binom{\alpha}{j+1}+j\binom{\alpha}{j}\right\} x^{j} \\
&=\alpha+\sum_{j=1}^{\infty} \alpha\binom{\alpha}{j} x^{j}
\end{aligned}
$$

Thus, the Eq 7.1 holds. From this we have $F(x) \neq 0$ for all $x \in(-1,1)$. To see this, if $F(c)=0$ for some $c \in(-1,1)$, then $F^{\prime}(c)=0$ by Eq 7.1. Differentiating the Eq 7.1, we get $F^{(2)}(c)=0$. To repeat the same step, we have $F^{(n)}(c)=0$ for all $n=0,1,2 \ldots$. Notice that since F is real analytic on $(-1,1)$, $F(x)=\sum_{n=0}^{\infty} \frac{F^{(n)}(c)}{n!}(x-c)^{n}$ in some open subinterval J of $(-1,1)$ that contains c and so $F \equiv 0$ on J. From this if we put the set $L(c):=\{-1<\alpha<c: F(t)=0 ; \forall t \in(\alpha, c]\}$, then $L(c) \neq \emptyset$. Hence, $a:=\inf L(c)$ exists and so $-1 \leq a$. First we notice that $a \in L(c)$, that is $F \mid(a, c] \equiv 0$. Next we want to show that $a=-1$. If not, assume $-1<a$. Since $F(a)=\lim _{t \rightarrow a+} F(t)$, we have $F(a)=0$. As the reason above, there is an open subinterval J_{1} of $(-1,1)$ containing a satisfying $F \mid J_{1} \equiv 0$ and so, there is a point $-1<a_{1}<a$ such that $F \mid\left(a_{1}, a\right] \equiv 0$. This gives $a_{1} \in L(c)$ and so, $a \leq a_{1}$ that contradicts to $a_{1}<a$. Therefore, we have $F \mid(-1, c] \equiv 0$. Similarly, one can also obtain $F \mid[c, 1) \equiv 0$. Hence, $F \equiv 0$ on $(-1,1)$. It is absurd. This and Eq 7.1 give

$$
\int_{0}^{x} \frac{F^{\prime}(t)}{F(t)} d t=\int_{0}^{x} \frac{\alpha}{1+t} d t
$$

for all $x \in(-1,1)$. This implies that $F(x)=(1+x)^{\alpha}$ as desired.
(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong Email address: cwleung@math.cuhk.edu.hk

